学年

教科

質問の種類

数学 高校生

この問題の ク で、2が間違ってる理由が分かりません。 何故Nの最大値は境界を通るNの値と一致しないのでしょうか?? 0が合ってる理由は分かりますが2がわならないです。。 教えて欲しいです! また、スセソタチで、何故格子点の最大値が答えになるのでしょうか? 解説お願いします!

95-4+18 第3問 (必答問題) (配点 28) 2 y =++N y- もは x,yを実数として、①の2つの不等式, およびx≧0, y≧0 からなる連立不等 式の表す領域をDとする。 こで,x,y 式 ③、④. る連立不等 部分(埃 た、直線 y=-3x [1] あるサプリメントには, 1包が1g入りで10円の顆粒 1錠が0.2gで30円の錠 剤の二つのタイプがある。 N=ア x+yの表す直線をlとすると このことから,x,yが①を れは傾き 含まれる栄養成分は, 顆粒では1包に0.3g, 錠剤では1錠に0.1gであり, 残り の成分はすべて添加物である。 満たす0以上の実数のとき,Nはx=y= コ で最大値 サシをとることがわ 18 かる。 このサプリメントを二つのタイプの価格の合計が180円以下,かつ,含まれる添 加物の合計が3.6g以下となるように使用し、含まれる栄養成分の合計を 0.1×N(g) とするときの最大値を求めよう。 3 顆粒をx包, 錠剤をy錠使用する場合, N= x+y であり,価格,添加物 の合計の条件は3 x+ イ である。 X+24=(F 8 y≤ ウエ かつ オ x+y カキ 大学Ⅱ, 数学 B 数学C第3問は次ページに続く。) ク | については,最も適当なものを,次の①~③のうちから一つ選べ。 ⑩ ①を満たす0以上の実数x, yで,N= アx+yとなるものが存在する ことと, 直線ℓが領域Dと共有点をもつことは同値である。 よってNの 最大値は,直線lが領域 Dと共有点をもつような最大のNの値と一致する ① ①を満たす0以上のすべての実数x, y, N= ア x+yとなること と、 直線 l が領域Dと共有点をもつことは同値である。 よって, Nの最大 値は, 直線ℓが領域Dと共有点をもつような最大のNの値と一致する ② 直線 l が領域Dと共有点をもつとき、領域D に属する点 (x, y) で 直線 上にあるものが存在する。 よって, Nの最大値は, 直線ℓが領域 Dの境界 を通るときのNの値と一致する 直線 l が領域 Dと共有点をもつとき、領域Dに属するすべての点(x,y) が直線上にある。 よって, Nの最大値は, 直線 l が領域 Dの境界を通る ときのNの値と一致する ( ③ かつ ④ で、 N= ことと, の最大値 致する より きNは たがっ 3-2 eが きの 下図 上が x よび (第2回5) しかし、実際に使用するのは1包単位, 1錠単位であるから, x, yが①を満たす 20以上の整数のときを考えると, Nはx=y= ス および, x= セ y= で最大値 タチをとることがわかる。 (数学ⅡI, 数学 B, 数学C第3問は次ページに続く。) (第2回-6)

解決済み 回答数: 1
数学 高校生

ここにマイナスがつかないのはなぜですか?

177 確率密度関数 連続型確率変数Xのとり得る値xの範囲が s≦x≦t で,確率 密度関数 f(x) のとき,Xの平均E (X) は次の式で与えられる. E(X)=√xf(x)dx αを正の実数とする. 連続型確率変数Xのとり得る値xの範 囲が -a≦x≦2α で, 確率密度関数が 2 (x+a) (-a≦x≦0 のとき) se f(x)= であるとする. 3a2 1 3az(2a-x)(0≦x≦2a のとき) (1)Xが4以上 12024以下の範囲にある確率 P(a≦x≦2/20) を求 (2) Xの平均E (X) を求めよ. (3) Y=2X+7 のとき,Yの平均E (Y) を求めよ. 精講 これまでは,ものの個数や起こった回数などのように, 確率変数が とびとびの値をとるものだけを扱ってきました. この確率変数を離 散型確率変数といいます. これに対して, 人の身長,物の重さ, 待 ち時間などのように, 連続的な値をとる確率変数を連続型確率変数といいます. 連続型確率変数X が α以上 6以下の範囲にある確率P(a≦x≦b)は, P(a≦x≦b)=f(x)dx 確率を図の斜線部分の面積として表す で表されます.すなわち, 確率 P(a≦X ≦ b) は, y 曲線 y=f(x), x軸, 直線 x=a,x=b P(a≤x≤b) で囲まれた部分の面積で表されます. y=f(x) ここで関数 f(x) は f(x)≥0 【確率は負になることはないので f(x) <0 になることはない であり,Xのとり得る値の全範囲が α≦x≦ß a b I たし この 分散 | 偏差 考

解決済み 回答数: 1
数学 高校生

高一 物理  速度の求め方と⑪の求め方を教えて欲しいです

√3+√5+15-17) (√3-√5 +√7)(-√3+√5 2+6x のア 式 ※各点を折れ線で結んではいけない。 各点の最も近傍を通るような直線または曲線を描く。 また,おもりの重さを変えたグラフは同じ軸内に記入し, 比較できるようにする。 11 v-t グラフの傾きから,それぞれのおもりについての加速度を求めよ。 ※ 加速度を求めるための値は,グラフの方眼の値から読みとる。 例えば, OS の時の速度と0.40s の時の速度を読み取り,その傾きを計算する。 計算の過程を記入すること。 0.40 「くだせれ たす おもりの重さ 0.50kg(500g ) 1.00kg (1,000g) 番号 時刻 中央時刻 t[s] t[s] 位置 変位 速度 x[cm] Ax[cm] v[cm/s] 位置 変位 速度 x[cm] Ax[cm] v[cm/s] 0 0.000 0.00 定める 0.00 0.020 0,500 ・25.0 2.50 62.5 1 0.040 0.50 2,50 0.060 0.700 17.5 2090 77215 ある 2 0.080 5.400 1.20 0.100 1,200 30.0 3.40 85.0 3 0.120 ある 2.40 8,80 0.140 1,300 32.5 [か] 4.60 115 4 0.160 3.70 13.40 0.180 2.00 50.0 4.00 110 5 0.200 5.70 17,40 0.220 2.40 60.0 4,50 11136 部 6 0.240 8.10 21.90 0.260 2,80 70.0 5.00 1125 7 0.280 10.90 26.90 0.300 3.10 7.7.5 5,30 133 18 0.320 14.00 32:20 0.340 3.500 8.75 5.60 140 9 0.360 17.50 37.80 0.380 4,100 102.5 6.10. 2153 10 0.400 21.40 43.90 |加速度の計算過程と値。 加速度の計算過程と値。 00/07 -3-

回答募集中 回答数: 0
数学 高校生

解答の95+12x>100+12(20-x) になるのがわかりません。95と100は重さで12xと12(20-x)は、球の数のはずなのに足すのはなぜですか?

59 1 ◎基本2 なるだろうか? (2) も同様。 AxB の形に A>0, A=0, で場合分け。 基本 例題 32 1次不等式と文章題 下 Aの箱の重さは95g,Bの箱の重さは100gである。 1個12gの球が20個あ り,これらをAとBに分けて入れたところ,Aの箱の方が重かった。そこで 基本30 Aの箱からBの箱に球を1個移したところ、今度はBの箱の方が重くなった。 最初,Aの箱には何個の球を入れたか。 CHART & SOLUTION 文章題の解法 ① 変数を適当に定め、関係式を作って解く ②解が問題の条件に適するかどうかを吟味 最初,Aの箱の球をx個としたときのAとBの重さを比較した関係式を作る。 次に,Aの箱の球を1個減らし、Bの箱の球を1個増やしたときの重さを比較した関係式を 作る。こうしてできる2つの不等式を連立させて解けばよい。 なお, xは自然数であることに注意する。 解答 となるためには,最大 とき 0 を代入して すべての実数x の範囲を定 Bは (20-x) 個 最初,Aの箱にx個の球を入れたとすると して0.x=0である A,Bの重さを比較して 95+12x > 100+12(20-x ) 05Aの方が重い。 245 整理して 24x>245 よって x> 24 正の数なので、 の向きはそのまま Aの箱から1個減らし, Bの箱に1個増やしたとき A,Bの重さを比較して 95+12(x-1) <100+12(21-x) ← Aは (x-1) 個, Bは(20-x+1) 個 ←Bの方が重い。 1章 1次不等式 整理して 24x<269 よって は負の数なので、 x<- 24② である 269 の向きは逆にな 245 ①と②の共通範囲を求めて 269 ·<x<· 24 24 245 24 ≒10.2, 269 24 ≒11.2 xは自然数であるから x=11 ◆解の吟味。 したがって,最初Aの箱に入れた球は11個である。 2 Ic

解決済み 回答数: 1
数学 高校生

四角2の(3)の問題です 3枚目の、緑でマーカーを引いている部分がわかりません なぜこのように変形できるのか教えてくださいm(*_ _)m

1 次の を正しくうめよ。 ただし、解答欄には答えのみを記入せよ。 (1) √3+√(-2)2-3を計算し、簡単にすると, (ア) となる。 (2) (2x+1)(2x-5) (x-2) を展開し、整理すると, (イ) となる。 (3) 4q+4ab-36 を因数分解すると, (ウ) となる。 11x-20 <3(x+4) (4) 連立不等式 の解は, (エ) である。 x+2 2x-1 ≦1 2 3 (5) 方程式 17x-41=3 の解は, x= (オ) である。 2 2次方程式 x2-4x2=0の2つの解を a, b (a <6) とする。 (1) a, b の値をそれぞれ求めよ。 (2)+6°+2の値をそれぞれ求めよ。 a 金 不等式 x=/..①を解け。また,不等式①と k≦x≦k+3 をともに満たす 整数xがちょうど2個存在するような定数kの値の範囲を求めよ。 (配点 25 ) 3 太郎さんと花子さんは、食塩水の濃度についての課題を考えている。 課題 x>0とする。 濃度がx% の食塩水 200g がある。この食塩水に, (A)または(B)の ずれかの操作を行い,食塩水の濃度が4% 以上 6% 以下になるようにする。 <操作> (A) 水を110g 加える。 (B) 食塩を7g加える。、 このとき、ある条件を満たすxの値の範囲について考える。 太郎 : 食塩水の濃度は、食塩水全体の重さに対する食塩の重さの割合を%で表した (食塩水の濃度)= (食塩の重さ) (食塩水の重さ) -X 100 (%) だよね。 食塩と食塩水の重さに着目するといいよね。

解決済み 回答数: 1