学年

教科

質問の種類

数学 高校生

数Cの複素数平面の問題の中の数列の内容です。 α⁵=1⇔(α-1)(α⁴+α³+α²+α+1)=0と下の写真の赤線部に書いてあって、その写真の赤四角部にどうやってこの式を導くのか書かれているのですが、数列の和の公式に代入したあとの式変形が分からないので教えて欲しいです。

30 重要 1071の乗根の利用 複素数α (α1) を1の5乗根とする。 (1)+α+1+1=0であることを示せ a (2)(1) を利用して,t=α+αは1+t-1=0を満たすことを示せ。 2 (3) (2) を利用して、 COS の値を求めよ。 00000 ((1)~(3) 金沢大) (4) a=cos/-/2x+isin 2/2 とするとき, (1-2) (1-4) (1-4) (1-α^)=5であ ることを示せ。 指針 (1) αは1の5乗根⇔=1⇔ (a-1)(^+α+α+α+1)=0 (2)g=1より|a|=1 すなわち αa=1であるから, かくれた条件α = ●基本105 1 a を利用。 1/23aisin 2/23 とすると,は1の5乗根の1つ。t=q+αを考え,(2)の (3) a=cos 5 結果を利用する。 (4)=1 を利用して, (k=1,2,3,4,5)が方程式 28=1の異なる5個の解であ ることを示す。これが示されるとき,z-1=(z-a)(z-a2)(za)(z-a^)(2-2) が成り立つことを利用する。 (1-2) (1-2) (1-2) (1-α)に似た形。 ある。 ここで, 次方程 25-1= N と因数 両辺に 別解 重要 重要 樹 1の (1) α = 1 から (α-1) (α^+α+α2+α+1)=0 a5-1=0 解答 α≠1 であるから α+α3+α2+a+1=0 一般に 両辺を ^ (0) で割ると2+α+1+1 1 a + Q2 = 0 5) とした (2) α5=1から |a|5=1 JT よって |a|=1 ゆえに|a=1 aiai+ 800 a すなわち aa=1 よって a = 1 S a 200 2"-1 =(2-1) (2'''+27-2 +... +1 ) [nは自然数] が成り立 つ。この恒等式は,初項 1,公比2,頂数nの等比 数列の和を考えることで 導かれる。 数 2° a

解決済み 回答数: 1
数学 高校生

数Cの複素数平面の問題です。(1)では場合分けをしなかったのに(2)では場合分けをする理由が分からないので教えて欲しいです。

515 重要 例 96 複素数の極形式 (2) ****** 偏角の範囲を考える ①①①①① 次の複素数を極形式で表せ。 ただし, 偏角0 は 002 とする。 (1) 指針 cosa+isina (0<α<z) (2) sina+icosa (0≦x<2π) 基本 95 既に極形式で表されているように見えるが, (cos+isin●) の形ではないから極形 式ではない。 式の形に応じて 三角関数の公式を利用し, 極形式の形にする。 (1)実部の符号 - を + にする必要があるから, cos (π-0)=-cos0 を利用。 更に 虚部の偏角を実部の偏角に合わせるために, sin (π-0)=sin0 を利用する。 (2)実部の sin を cos に, 虚部の Cos を sin にする必要があるから, COS (一)=sine, sin(10) 0 =cose を利用する。 また、本問では偏角 0 の範囲に指定があり, 002 を満たさなければならないこと に注意。特に(2)では,αの値によって場合分けが必要となる。 3章 138 複素数の極形式と乗法、除法 CHART 極形式 (cos+isin) の形 三角関数の公式を利用 (1) 絶対値は 解答 また cos(b)=-coso sin(π-0)=sin O √(-cosa)+(sina)=1 -cosa+isina=cos(π-a)+isin (π-α) SI...... 1 <<πより,<<πであるから,①は求める極偏角の条件を満たすかど 形式である。 (2)絶対値は また ここで TC √(sina)²+(cosα)²=1 (+1-31 32 sinaticosa=cos(a)+isin(カーム) 0≦a≦のとき,nus であるから、求め る極形式は sinaticosa=cos π <α <2のとき 2 うか確認する。 cos(1-0)=sino sin(-)-cos 0 D 2 10≦x<2πから -as. ゆえに、αの値の範囲に (-a)+isin(-a)+ 180 よって場合分け。 5-2 232 V <<2のとき、偏 TC -a<0 2 π (各辺に2を加えると, --α<2であり 2 cos(-a)-cos(-a). 5 0 2 COS 2 sin(-)-sin(27) 10)805) 2sin(+2nx)=sin◆ 角が0以上 2 未満の範 囲に含まれていないから、 偏角に2を加えて調整 する。 なお cos( +2nx)=cos よって、 求める極形式は sina+icos a=cos(-a)+isin(-a) [n は整数 ] so 次の複素数を極形式で表せ。ただし、偏角0は002とする。求めよ。

解決済み 回答数: 1
数学 高校生

数学の問題です (3)についてです -1<x<1のとき、なぜθの値が2つ存在するといえるのでしょうか どなたか解説よろしくお願いします

大学) B上に No 5 があるから 10 [2024 西南学院大] 002 のとき, αを定数として, 関数 f(0) =4sin204cos0 +1 -a を考える。 (1) cos0=xとおくとき, f (0) をxの式で表せ。 (2) a=0 のとき, f(0) の最大値, および最小値と,それらの値をとるときの0の値を 求めよ。 いる。 方程式 f(0)=0が異なる4つの解をもつとき, aのとりうる値の範囲を求めよ。 求 家の足をHと (1) f(8)=4sin-4cos0+1-a=4(1-cos20)-4cos0 +1-a =-4cos20-4cos0+5-a=-4x2-4x+5-a (2)002のとき -1≤x≤1 ① また,g(x)=-4x2-4x+5-α とすると, a=0のとき g(x)=-4x2-4x +5 =-4(x+1)²+6 ①の範囲において, 関数 g(x) は x=-- -- で最大値6,x=1で最小値 -3 2 をとる。 002 であるから, x=-- -12 となるのは、 2 4 cos=-- ・から x=1 となるのは, cos0=1から 0=0 2,-s)」 よって, 関数 f(0) は 4 ・π, 0=1/2x, 1/3本で最大値6 1-2 ©DISNEYIPOKAF 1 10 2 -3 x x (2) 0=0で最小値-3 をとる。 (3) -1 <x<1であるxに対して, 対応する0の値は2つ存在するから, 方程式 g(x)=0が1<x<1の範囲に異なる2つの実数解をもつようなαの値の範囲を求め ればよい。 方程式 g(x) = 0 を変形すると -4x2-4x+5=a よって、 求めるαの値の範囲は, 曲線 y= -4x2-4x+5 と直線y=αが−1<x<1 の範囲で異なる2点で交わるようなαの値の範囲に一致する。 したがって, (2) から 5<a<6

解決済み 回答数: 1
数学 高校生

高一数Aです。 124(4)の1行目(a5乗🟰7でわった…)のところから意味がわかりません。 解説して頂けるとありがたいです🙇‍♂️

○ 整数 n は, たときの余 基本 例題 124 割り算の余りの性質 000 a は整数とする。αを7で割ると3余り, 6を7で割ると4余る。このとき, 次の数を7で割った余りを求めよ。 (1)α+26 (2) ab (3) α^ (4) a2021 p.536 基本事項 1,3 指針 前ページの基本事項の割り算の余りの性質を利用してもよいが,(1)~(3)は, a=7k+3,b=71+4 と表して考える基本的な方針で解いてみる。 (3)(7k+3)を展開して、7×○+▲の形を導いてもよいが計算が面倒 d' = (42)2 に 着目し,まず,2を7で割った余りを利用する方針で考えるとよい。 (4) 割り算の余りの性質 4αをmで割った余りは,r” をmで割った余りに等しい を利用すると,求める余りは「32021を7で割った余り」であるが,32021 の計算は不可 能。 このような場合,まず α” をmで割った余りが1となるnを見つけることか ら始めるのがよい。 CHART 割り算の問題 A=BQ+R が基本 537 (割られる数) = (割る数)×(商)+(余り) a=7k+3,6=7l+4(k, lは整数) と表される。 解答(1) α+26=7k+3+2(71+4)=7(k+2l)+3+8 IS+ bh=7(k+21+1)+4 したがって,求める余りは 4 =7(7kl+4k+3 +1) +5 7 を除法の原 と呼ぶこと る。 -7.(-4)-2 ると,0≦x<b (8+1 (2) ab=(7k+3)(71+4)=49kl+7(4k+3l)+12 (I+ したがって、求める余りは 5 Tour to a hely かしいり たさない。 のときa=bg りαはもの倍 5. bはαの約数で Bk のとき, A 3の倍数。 n<b ると (3)²=(7k+3)2=49k²+42k+9=7(7k²+6k+1)+2 d2=7m+2(m は整数) と表されるから Da=(a²)²=(7m+2)²=49m²+28m+4 したがって=7(7m²+4m)+4 したがって,求める余りは 今 AE)E= (4)(3)より, αを7で割った余りが4であるから,7 で割った余りは, 4・3を7で割った余り5に等しい。 ゆえに,αを7で割った余りは5・3を7で割った余り 1に等しい。 α2021=(a)336.α5であるから, 求める余りは,1336.5=5 を7で割った余りに等しい。 したがって, 求める余りは 5 別解 割り算の余りの性質 を利用した解法。 (1)2を7で割った余りは 2(2=70+2) であるか 25を7で割った余 りは2・48を7で割っ た余りに等しい。 ゆえに α+26を7で 割った余りは3+1=4を 7で割った余りに等しい。 よって、 求める余りは 4 (2) abを7で割った余り は3・4=12を7で割った 余りに等しい。 よって、 求める余りは 5 (3)αを7で割った余り は3=81 を7で割った 余りに等しい。 よって、 求める余りは 4 このとき

解決済み 回答数: 1
数学 高校生

マーカーで線を引いてあるところはどのように式変形をしていますか??

26 = √√√3. 12 ( 29-√si 9 -3+ √3i 29 + 29 9 (3) 正の整数mに対して, .6m 26m -a a = (-27 √√3.6( そこで,26mの実部 2 千葉大学・理系 複素数 (1998~2020) 問題 複素数平面上で複素数 0.3, Js+iを表す点をそれぞれA Bo, Bとする。 の整数nに対して, 点 An+1 は線分ABの中点とし, 点B7+1は直線ABに関して B-1 の反対側にあり,三角形A+BB+】 が三角形A, BoB, と相似になるものとする 点An (n=1,2,3, ...) が表す複素数をznとする。 (1) 複素数 z3 を求めよ。 (2) 複素数26 を求めよ。 (3)正の整数 m に対して,複素数 26m の実部と虚部をそれぞれ求めよ。 解答例 (1) 複素数平面上で A1(0), Bo(√3), Bi(V+i)とし 点A2は線分ABの中点, 点 B2 は直線AB」に関して点 Bo の反対側で, △A 2 B B 2 が A B B, と相似になる。 <B2A2B, で, A1A2: A2A3=1:b1=1:- √√3 2 √3 = 6 YA 1 A, Para から,A2AsはA,A2をこだけ回転し、大きさを倍 OA₁ したものになる。 6 ここで, α=- 1/(cosisin)=1/2(+1/2 = 1/2 + とおくと、 √32 6 23-22=α(22-21), 23=22+α (22-21) √√3 さらに, 0,2= + =√3αであることに注意すると, 2 2 23 = √3a + √3a² = √3a (1+a) = √3 (1+ √3)(3+ √3) 2 6 2 3 3 (2)(1)と同様に考えると, 一般的に,Zn+2-Znil = α (Zn+1-Zn)となり, Zn+1-Zn=(2-2)^1=(√3a-0)a"-1=√3a" すると, n≧2において, α≠1から, n-1 2n = 21+√3a=0+ √3a (a"-1)√3.a" -a k=1 6 α-1 = α-1 ....(*) (*)から,26=vaq となり,α = ((cos+isinx)= -a=! a6-0 また, α-1= 1 α-1 √3 Si 27-(+√3)=29 √3; 12 + 6 6 -1 == 2 6 + 追iから、 6 _1なので、 27 -112- Re(26m) 12 Im(26m) ======== 12 「コメント 図形絡みの複素数と せずに数値計算をしま まず一般的に解く方法

解決済み 回答数: 1