学年

教科

質問の種類

数学 高校生

(3)についてです。やっていることはわかるのですが、なぜそこから最後に「ゆえに〜」で答えになるのかが分かりませんでした。教えていただきたいです。

190 解答編 50 2012年度 文系〔1〕・理系〔1〕 座標平面上に2点A (1, 0), B(1, 0) と直線があり, Aとの距離とBとの 距離の和が1であるという。 以下の問に答えよ。 (1) Zy軸と平行でないことを示せ。 (2)が線分AB と交わるときの傾きを求めよ。 (3)が線分AB と交わらないとき,と原点との距離を求めよ。 Level C 2/m =1 21ml=√m²+1 m2+1 両辺0以上なので平方して 1 4m²=m²+1 m² = 3 1 m = ± √3 (2) (3) 直線をy=mx+nとおき, 点と直線の距離の公式を用いて, A. Bからの距離 ポイント (1) 直線をx=kとおき, A, Bからの距離の和を場合に分けて計算する。 の和を求める。 線分AB と交わる, 交わらないという条件から, 絶対値を1つにまとめ ることができる。 図形的に求めると 〔解法2] のようになる。 解法 1 ゆえに、1の傾きは (3)(2)と同様に dA+dB=- |m+n|+|-m+n| √m²+1 直線が線分AB と交わらないことから f(1)f(-1)>0 20-TO (m+n)(-m+n)>0 したがって、m+nとm+nは同符号なので |m+n|+|-m+n|=|(m+n)+(-m+n) | = 2|n | 2|n| よって d₁+dB=- √m2+1 (1) Aとの距離, Bとの距離をそれぞれda, dB とおく。 の方程式をx=k (kは実数) とすると d+dB=1より =2 (-1≤k<1) よって dA+dB= √m2+1 d+dB=1より dx+ds=|k-1|+|k-(-1)|=|k-1|+|k+1| -2k (k<-1) 2k (k≧1) いずれの場合もd + dB≧2 であるので, d+dB= 1 となることはない。 すなわち、y軸と平行でない。 (2)1の方程式を y=mx+n (m,nは実数) とおくと,mx-y+n=0より |m+n||-m+n| |m+n|+|-m+n| dд+dB= + == √m2+1 √m²+1 /m²+1 ここで, f(x) =mx+nとおくと, 直線が線分AB と交わることから (m+n)(-m+n) ≤0 f(1)f(-1)≦0 (m+n)(m-n)≧0 したがって, m+nとm-nは同符号または一方が0なので |m+n|+|-m+n|=|m+n|+|m-n|=|(m+n)+(m-n) | =2|m| 2|m| (2) A,Bからに下ろした垂線の足をそれぞれP, Q とすると,条件より AP +BQ = 1 Bを通りと平行な直線を / 直線APとの交点 をRとすれば, △ABR について AB=2, AR = AP+PR = AP +BQ= 1, ∠ARB=90° したがって ∠ABR=30° ゆえに、この傾き、すなわちの傾きは ・・・() 2|n n 1 =1 √m²+1 √m²+1 2 │n│ ゆえに,Iと原点との距離は 1 ......(答) √m²+1 2 解法 2 (証明終) B 54 図形と方程式 191 R A

解決済み 回答数: 1
数学 高校生

次の問題の青いところで何をしているのかよくわからないのですがどなたか解説お願いします🙇‍♂️

んが-1≦k≦0 の範囲を動くとき, 直線 l:y=(2k+1)x-k-k の通 過する領域を図示せよ。 思考プロセス 《ReAction 曲線の通過領域は、 任意定数が実数解をもつ条件を考えよ 例題128 との違い・・・ 定数kに -1≦k≦0 という範囲がある。 例題128) 見方を変える -1≦k≦0 のとき, 直線 y= (2k+1)x-k-kが点 (X, Y) を通る。 ⇒ Y = (2k+1)X-k-k を満たす実数が-1≦k≦0 に存在する。 > 2次方程式(2X-1)k + Y-X = 0 を満たす実数kが-1≦k≦0に存在 する。 解 直線が点(X, Y) を通るとすると Y = (2k+1)X-k² - k IA 07 すなわち k-(2X-1)k+Y-X = 0 を満たす実数kが-1≦k≦0 に存在する。 ...① f(k)=k-(2X-1)k+Y-X とし, ① の判別式を D と すると D=(2X-1)-4(Y-X)=4X - 4Y + 1 点 (X, Y) の集合 (領域) を求めるために, XとY の関係式を導く。 (ア) 方程式①のすべての解が 1<k<0 の範囲に存在 するとき [D≧0 Y ≤ X² + 11/1 「重解の場合も含む。 -1 < 2X-1 <0 2 |f(-1)>0 [f(0) > 0 すなわち <x< 2 Y> -X LY > X 12 (イ) 方程式の解が-1<k<0 の範囲に1つとん<-1, 0<k の範囲に1つ存在するとき f(-1)f(0) <0 より (X+Y)(-X+Y) < 0 [Y> -X よって fY< -X \Y<X または [Y> X (ウ) 方程式 ① がん= -1 または k = 0 を解にもつとき f(-1)f(0) = 0 より (X+Y)(-X+Y)=0 よって Y = -X または Y=X (ア)~(ウ)より, 求める領域は右の 図の斜線部分。ただし,境界線を 含む。 12 34 [y=x+ 4. ReAction IA 例題 105 「解の存在範囲は,判別 式・軸の位置端点のy 座標から考えよ」 ReAction IA 例題 106 「2数 α, 6の間の解は, f(a), f (b) の符号を考え よ」 ReAction 例題 120 「不等式 AB>0 で表さ れた領域は、2つの連立 不等式に分けて考えよ」

解決済み 回答数: 1