数学
中学生
解決済み

[2]の(1)の18秒の求め方がわかりません( ; ; )
テキストに書き込んでて申し訳ないのですが教えてください😭💧‼️

となる。 (ずっと おしゃ す ずに歌いたいで 飲を扱うをし ガッチ 練習問題 公立高校の入試をしようと ① 兄と弟が家から1000m はなれた。公園に行きました。弟は午 前 10 時に歩いて家を出発し、途中の郵便局で、あとから出発 した兄に追いつかれたので、郵便局から歩く速さを速めました。 図は、弟が家を出発してからの時間と道のりの関係を表したグ ラフです。このとき、次の(1),(2)の問いに答えなさい。 (mm) 1000] 500 (1) 弟が家から郵便局まで行ったときの速さは、毎分何mです か。 その速さを求めなさい。 (岩手県) O 10 (10時) (2) 兄は、10時7分に自転車で家を出発し、郵便局で弟に追 いついたあと、用事がすんでから、郵便局までと同じ速さで公 園に向かい、弟と同じ時刻に公園に着きました。 兄は、郵便局に寄っていた時間以外は、弟と同じ道を一定の ANY 速さで走ったものとします。 兄が家から公園まで行ったときの様子を表すグラフを図にか き入れなさい。 2図1のように, 周の長さが120cmの円があり、この円周上に固 定された点 A がある。 点P は, Aを出発し、毎秒2cm の速さで 円周上を時計回りに動く。 点 Q は, 最初 A の位置にあり、点P が出発してから15秒後にAを出発し、毎秒5cmの速さで円周 上を時計回りに動く。 点Pが出発してからx秒後の弧 PQ の長 さをycm として,あとの問いに答えなさい。 A 図1 でより ッた。弟は、 生に駅に着いて兄 人が一緒に家を ラフに表した えなさい。ただ と別れてから に戻ってから ないものとする。 次の文は、右 P ただし,弧 PQ の長さは2点P, Q を両端とする2つの弧の長さのうち短いほうとし、2つの弧の長さが等しいとき は, その長さとする。また, 2点 P, Q が重なったときは y=0とする。 (1) PAを出発してから, 3秒後と18秒後の弧PQの長 さは何cm か、 それぞれ求めなさい。 図2 y (cm) (2) 図2は、点PがAを出発してから, 点Qが点Pにはじめ て追いつくまでのxとyの関係をグラフに表したものである。こ のグラフにおいて, xの変域が15≦x≦25 のとき,yをxの式で 表しなさい。 60 50 40 30 20 10 (3) QP にはじめて追いついてから次に追いつくまで の,xとyの関係を表すグラフを図2にかき加えなさい。 何秒後から何秒後か、 求めなさい。 120cm ( 山形県 ・ 改) O 10 20 30 40 50 60 70 8 (4) PAを出発してから, 点Qが点Pに2度目に追いつくまでに, 弧 PQ の長さが50cm以上にな 2(土)~ が忘れ物 を出てか 距離 着くまで である。 2

回答

✨ ベストアンサー ✨

P→18秒後 36cm
Q→18−15秒後 15cm

36−15=21cm

恋菜

めっちゃめっちゃ分かりやすくてびびりました🥹
ありがとうございます😭💖

この回答にコメントする
疑問は解決しましたか?