a²-2a + b²+4b + c²+2c +d²-2d + 7 ≤ 0
(a²-2a+1) + (b²+4b+4) + (c²+2c+1) + (d²-2d+1) ≤ 0
(a-1)² + (b+2)² + (c+1)² + (d-1)² ≤ 0
由於 (a-1)² + (b+2)² + (c+1)² + (d-1)² ≥ 0
(等號成立條件 a-1 = b+2 = c+1 = d-1 = 0)
故 a=1 , b=-2 , c=-1 , d=1
a²-2a + b²+4b + c²+2c +d²-2d + 7 ≤ 0
(a²-2a+1) + (b²+4b+4) + (c²+2c+1) + (d²-2d+1) ≤ 0
(a-1)² + (b+2)² + (c+1)² + (d-1)² ≤ 0
由於 (a-1)² + (b+2)² + (c+1)² + (d-1)² ≥ 0
(等號成立條件 a-1 = b+2 = c+1 = d-1 = 0)
故 a=1 , b=-2 , c=-1 , d=1
この質問を見ている人は
こちらの質問も見ています😉