数学
中学生
解決済み

(2)で✖️2がいらないのはなぜですか

Jomm ampus きれいに消えて なめらかに書ける薬品比 TITLE 数学 大人4人と子ども3人が1列に並ぶとき, 次のような並び方は何通りあるか、 185-部指定の順列 〔1〕…隣り合う (1) 子ども3人が続いて並ぶ (2) 大人が両端になる (3) 特定の2人の子ども A, Bの間に大人が1人だけ入る 段階的に考える を1人と見なす。 □1人と残りの4人の計5人を並べる。 (1) ② ③ □の中を並べる。 (2) ① 両端の大人を並べる。 思考のプロセス ② 残りの5人を並べる。 (3) A,Bと間の大を1人とみる。 Action》 隣り合うものがある順列は,それらを1つと考えよ 方眼罫 2512 10mm 実 mm mp に消えて に書ける ※当社 (1) 子ども3人をまとめて1人と見なし、残りの大人4人 と合わせた5人の並び方は 5!通り そのおのおのに対して, 1人と見なした子ども3人の並 び方は 3!通り よって, 求める場合の数は 5! ×3! = 120×6=720 (通り) (2) 両端に並ぶ大人の並び方は 4P2 通り そのおのおのに対して,その間に並ぶ残りの5人の並び 2 BO る。 子ども3人の順列も考えて 大人4人から2人選んで 186 【例題 [1] 並べる。 両端には右端と 左端があるから、単に2 人を選ぶだけでなく、 序も考える。 大人 (1) [2] 大 並び 段階的 思考のプロセス 方は 5!通り よって, 求める場合の数は 4P2 × 5!=4×3×1201440 (通り) (3) 特定の2人の子ども A, B の並び方は 2!通り A, B の間に入る大人の選び方は 4通り この3人をまとめて1人と見なし、残りの4人と合わせ た5人の並び方は 5!通り よって、求める場合の数は 子から、 り)。 「特定の○○」とは「既に 決められている〇〇」と |いう意味であり、○○の |選び方は考えない(1通 2! × 4×5! = 2×4×120=960 (通り) [1] [2 解〔 356 練習 185 A から Gまでの7文字をすべて並べるとき,次のような並べ方は何通りあるか。 (1) A, B, C, D を続けて並べる C,D (2) 母音を両端にする (3)AとBの間に1文字だけはさむように並べる p.389 問題185

回答

✨ ベストアンサー ✨

なんの✖2がいる、と思ったのか教えてもらえると
回答しやすいかも。

両端に来る大人を4人から2人選んで並べてるから
₄P₂

大人4人をABCDとすると
A◯◯◯◯◯B
A◯◯◯◯◯C
A◯◯◯◯◯D
B◯◯◯◯◯A
B◯◯◯◯◯C
B◯◯◯◯◯D
C◯◯◯◯◯A
C◯◯◯◯◯B
C◯◯◯◯◯D
D◯◯◯◯◯A
D◯◯◯◯◯B
D◯◯◯◯◯C   
の12通り

残った5人を◯のところに並べる通り数がそれぞれ5!

よって、₄P₂×5!

この回答にコメントする
疑問は解決しましたか?