物理
高校生
解決済み

物理の波動の問題です。

黄色マーカーで引いたところなのですが、なぜ(2)と(5)でバネの伸びの表記方法が違うのですか?
(5)は「⊿ℓ-√2r0」ではないのですか?

振動する台上の物体の運動 発展例題20 図のように、ばね定数んの軽いばねの下端を固定し,上端に質量Mの 水平な台Bを取りつけ,その上に質量mの物体Aをのせた装置がある。 物体Aと台Bを, つりあいの位置を中心に鉛直方向に単振動をさせる。 このとき,物体Aが台Bからはなれることがないとすると,AとBは同 じ単振動をする。重力加速度の大きさをg として,次の各問に答えよ。 (1) 装置全体がつりあいの状態にあるとき,自然長からのばねの縮み 4 はいくらか。 台Bとともに単振動をしている, 物体Aの加速度 αはいくらか。 鉛直上向きを正 Aのつりあいの位置からの変位をxとして, 加速度αをxの関数として表せ。 (3) 台Bが物体Aを押す力fを,Aのつりあいの位置からの変位xの関数として表せ。 (4) 台Bが最高点に達したとき, 台Bが物体Aを押す力がちょうど0になったとする。 このときの単振動の振幅ro を, M, m, k, g を用いて表せ。 (5) 台Bをつりあいの位置から√2ro だけ押し下げ, 静かにはなすと, 物体Aは,つり あいの位置からの変位がx のところで台Bからはなれた。 変位 x1, およびそのとき の物体Aの速さを, M, m, k, g を用いてそれぞれ表せ。 (京都産業大 改) 指針 (1) 装置全体について, 力のつり あいの式を立てる。 (2) A,Bが一体となって運動しているので, A とBを一体とみなして運動方程式を立てる。 (3) (4) Aにはたらく力を考え, Aについての運 動方程式から, カナを求める。 (4) は, (3) 結果を利用する。 (5) AがBからはなれるのは, f = 0 のときであ る。 また, 単振動におけるエネルギー保存の法 則では, 運動エネルギーと復元力による位置エ ネルギーの和は一定である。 復元力による位置 エネルギーは, つりあいの位置からの変位xを 用いて, kx2/2 と表される。 解説 (1) 装置全体 の力のつりあいから, kal-(M+m)g=0 M+m A 'g k B Mg 41= (2) AとBを一体とみなす A と、 変位xのときに受ける 力は、図のように示される。 B 一体とした運動方程式を立 Mg (M+m)a=k(Al-x)-(M+m)g k4l-M+m)g=0 を用いて, a=- A kAl mg k(1-x) Ĵa mg k M+m XC (3) Aが受ける力は,図の ように示される。 Aの運動 方程式を立てると, ma=f-mg f = m (g+a) =mg k M+m x=x= 9. 単振動 115 発展問題 228, 229 ひ= M+m k g A B A B m k 0= m(9-M²mr.) M+m 0=mg- -g k k ro= (4) このとき,Aは振動の端に達しており, (3) の式でx=r のとき, f = 0 になったと考えら れる。 @ mg M ) (5) AがBからはなれるのは, f = 0 になるとき である。 (4) の結果から, 変位 x1 は, ↑a ess はなれたときのA,Bの速さをvとする。 Bを √2ro だけ押し下げてはなした直後と, AとB がはなれるときとでは, AとBの単振動のエネ ルギーの和は保存される。 単振動におけるエネ ルギー保存の法則を用いると, =/= k ( √ Tr]) ² = 1 {kx;² + 1/2 (M + m) v² x r に値を代入して, vを求めると, M+m g k Froではないのか? 第Ⅱ章力学Ⅱ
物理 波動

回答

✨ ベストアンサー ✨

あやふやな回答かもしれませんか、前者は釣り合いの式をで上にどれくらい(x)引っ張ったか、後者は下にどれくらい押し下げたかなので、まず符号は逆転します。
解答作成者がマイナスxにして⊿lの符号と反対に変えたので引っ張ったことがわかります。

⊿lのあるなしは後者はバネのエネルギーの総量の話をしているので、ちょっと(⊿l)沈み込んでいようが関係ないよね。ってところですが説明がうまくできてませんね。
小さいから無視できるという意味ではなく、無関係という意味です。

この回答にコメントする
疑問は解決しましたか?