物理
高校生
解決済み
この問題の(2)の解説なんですが、どこから1/4周期と分かるのですか?
教えて下さい。
発展問題
80.2つの物体の単振動■ 図1のように, ばね定数kの軽いばねの一端を壁に固定し
他端に質量Mの物体Aをつける。 床は水平でなめらかである。 このばねを自然の長さ
20
からαだけ縮めた状態にして、 質量mの物体Bを物体Aに接するように置き、手で押さ
えておく。 手をはなしたときの時刻を t=0 として, その後の物体AとBの運動につい
て考える。次の各問に答えよ。
トー自然の長さ→
(1) 物体AとBがはなれる瞬間のばねの伸びはいく
らか。
100000円
A
B
(2) 物体AとBがはなれる時刻を求めよ。
(3) 物体AとBがはなれた後, 物体Bは等速直線運
A 18
動をする。 物体Bの速さを求めよ。
TUGAS
(4) 物体AとBがはなれた後, 物体Aは単振動をする。
この単振動の振幅を求めよ。
B
100000
A
次に,図2のように,物体BをAの上にのせ、物体
Aを単振動させる。 物体AとBとの間の静止摩擦係数
をμ,重力加速度の大きさをgとする。
2 AG
(5) 物体Bが物体Aの上をすべることなく, 物体Aが単振動をするためには,振幅はい
くら以下でなければならないか。
(京都工芸繊維大改)
例題11
*34-8
81. 滑車と単振動■ なめらかに回転する軽い定滑車に,軽い糸を
かけ,一端に質量mの小球P, 他端に質量M (M> m) のおもり Q
をつり下げた。次に, Pと床の間を, ばね定数kの軽いばねで鉛
直方向につなぎ, P, Q をつりあいの位置で静止させた。ばねが
自然の長さになるときのPの位置を原点 (x=0) として, 鉛直上向
きにx軸をとる。また, 重力加速度の大きさをgとする。
(1) P, Qが静止しているときの,Pの位置を求めよ。
P
m
O-
Q
k
(1) の状態からPを引き下げて静かにはなすと, Pは,糸がピン
と張った状態を保って単振動をした。
(2) Pが位置xにあるときのPの加速度をα, 糸の張力の大きさをTとし,P,Qの
れぞれの運動方程式を示せ。 ただし, Pは鉛直上向き, Qは鉛直下向きを正とする。
(3) Pの単振動の角振動数を求めよ。運動を
(4) 糸がたるまないためには,Pをはなす位置
ha
80.2つの物体の単振動
解答
π M+m
k
(1) 0 (2)
(3)
21 k
M+m
M
(M+m)g
(4)
a (5)
VM+m
k
指針 (1)~(3) ばねが自然の長さになって,BがAからはなれるまで,
両者は一体となって単振動をしている。 (4) Bがはなれると,Aだけの
単振動になる。 Aについて, 力学的エネルギーの保存を考える。 (5) B
は, Aから受ける静止摩擦力を復元力として単振動をしている。
解説 (1) ばねが自然の長さになったとき, AとBがはなれる。 し
たがって,このときのばねの伸びは0である。
(2) ばねが自然の長さになるときの位置が単振動の中心であり, はな
れるまでの時間は4分の1周期となる。 AとBが一体となって単振
動をしているので,質量は M+mである。 求める時刻 t は,
1
t= ×2π
M+m TC M+m
k
2V k
(3) はなれる直前には, AとBは一体となっており, このときの両者の
速さをvとする。 このときと t=0 とで, 力学的エネルギー保存の法
k
ひ=
a
則の式を立てると,212k²=1/12 (M+m)²
M+m
(4) AとBがはなれた後, Aだけで単振動をするようになる。 はなれ
また直後と振動の端にきたときとで,Aの力学的エネルギーに着目し,
-kb2= Mv²
保存の法則の式を立てる。 求める振幅をbとし,
M
これに (3) を代入して6を求めると, b=
M+m
(5) Bは, Aからはたらく静止摩擦力を復元力として単振動をしてい
る(図)。 したがって, この復元力が最大摩擦力以下となればよい。 単
振動の振幅をcとする。 A, Bは一体となって単振動をしており、
体とみなしたときの復元力の大きさの最大値はkc となる。 加速度の
大きさの最大値αは、 運動方程式から,
a
kc
(M+m)a=kc a= M+m
これから, Bにはたらく復元力の大きさの最大値は, Bの運動方程式
mkc
を用いて,
ma=
M+m
これが最大摩擦力μmg以下となればよい。 したがって,
mkc
(M+m)g_
≦μmg
c≦
M+m
k
a
(1) ばねが自然の長さ
よりも長くなると,Aは
左向きに弾性力を受けて,
減速を始める。
ばね振り子の周期,
m
T=2π
のを
k
M+mに置き換えて計
算している。
ⓒBはAからはなれると
運動方向に力を受けなく
なり,はなれた瞬間の速
さで運動を続ける。
●Aは, ばねが自然の長
さとなる位置を中心とし
て単振動をしている。 振
動の両端にあるとき, そ
の力学的エネルギーは,
すべてばねの弾性力によ
る位置エネルギーとなる。
振動の両端では,復元
力の大きさが最大となり,
加速度の大きさも最大と
なる。
B
弾性力
200000
静止摩擦力
A
第Ⅰ章力学
(
回答
疑問は解決しましたか?
この質問を見ている人は
こちらの質問も見ています😉
すいません、よく分かりません。