Mathematics
SMA
Terselesaikan

(1)についてです。場合分けをするとかいてあるのですが、例えばこれが|x-2|=3の時は場合分けはしません。なんで3xの時は場合分けをしないといけないんですか?教えてください🙇‍♀️

基本 例題 41 絶対値を含む方程式 0000 73 次の方程式を解け。 項目 式の解法 (1)|x-2|=3x (2)|x-1|+|x-2|=x き) 指針 ) 141={_^ 絶対値記号を場合分けしてはずすことを考える。それには、 A (A≧0 のとき) 1 -A ( 4 < 0 のとき) であることを用いる。このとき、 場合の分かれ目となるの は, A=0, すなわち,| |内の式 =0の値である。 (1)x2≧0と x-2<0, すなわち, (2) 2<0 *-2≥0 x2とx<2の場合に分ける。 -1<0-10 (2)2つの絶対値記号内の式x-1, x-2が0となるxの 値は,それぞれ12であるから,x<1, 1≦x<2,2≦x の3つの場合に分けて解く (p.75 ズーム UP も参照)。 ⑥1次不等式 場合の分かれ目 (1) [1] x2 のとき, 方程式は x-2=3x 解答 これを解いて x=-1 ない。 x=-1 は x2 を満たさ [2] x<2のとき, 方程式は -(x-2)=3x 1 1 これを解いて x= 2 x= はx<2を満たす。 2 重要 場合分けにより,||を はずしてできる方程式の 解が、場合分けの条件を 満たすか満たさないかを 必ずチェックすること (解答の の部分)。 1 [1], [2] から, 求める解は x= 最後に解をまとめておく。 2 (2) [1] x<1のとき, 方程式は =(x-1)(x-2)=xx-1<0, x-2<0 → すなわち |-2x+3=x Ix -をつけて||をはず す。 これを解いて x=1 x=1はx<1を満たさない。 [2] 1≦x<2のとき, 方程式は (x-1)(x-2)=x これを解いて x=1 [3] 2≦x のとき, 方程式は x-10, x-2<0 x=1は1≦x<2を満たす。 (x-1)+(x-2)=x |x-1>0, x-2≧0 すなわち 2x-3=x これを解いて x=3 x=3は2≦xを満たす。 以上から、 求める解は x=1,3 最後に解をまとめておく。 y=x-2|のグラフと方程式 yy=3x (1)について y=x-2|は,x≧2のとき y=x-2, y=|x-2| 検討 PLUS ONE 4T であるから, y=|x-2|のグラフは右の図の① (折れ線) であ る(p.118 参照)。 折れ線y=|x-2| と直線 y=3x は,x 座標 がx=-1の点で共有点をもたないから, x = -1が方程式 |x-2|=3xの解でないことがわかる。 x<2のとき y=(x-2) 30 2 10 2 112

Answers

✨ Jawaban Terbaik ✨

絶対値の外に文字(xなど)があるときは場合分けを
します!

受験生

そうなんですね!ありがとうございます😊

Post A Comment

Answers

=3xのときはxに入れる数字によって符号や大きさがコロコロ変わるから範囲を決めてその範囲ならどの様に動くか計算しないといけない。
けど=3はどうやっても±3以外にはならないから範囲を考える必要がない。

受験生

理解できました!分かりやすい解説ありがとうございます!

Post A Comment
Apa kebingunganmu sudah terpecahkan?

Pengguna yang melihat pertanyaan ini
juga melihat pertanyaan-pertanyaan ini 😉