年級

科目

問題的種類

數學與統計 大學

求解第30、31題

演練題(Q&A) 4.機率分配模型 D: P(X> 8) C : 49/12 Ans C Ans c D: 3.5 31 標準常態分配的四分位距(IQR)約為多少? z 27:令為指數分配之隨機變數目變異數ar(X)=4,則平均數 EIN) = ? A:4 E(X)= =12 I # B: 16 C:2 Ans C D: 8 Varlx) = 7 7 7 =4 , 1 - 1 - 2 1.2 28:令X為平均數 ECK)=3 之指數分配隨機變數,則變異數 Var(N) = ? A:3 E(X) = 1 = 3.1= Standard Normal table: probability for PGO <Z <z) 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.0 | 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753 0.3 0.1179 0.1217 0.12550.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517 0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 0.6 0.2257 0.2291 0.2324 0.2357 0.2389 | 0.2422 10.2454 | 0.2486 0.2517 0.2549 0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 03133 0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389 1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015 1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319 1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441 1.610.4452 | 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545 1.7 0.4554 0.4564 0.4573 0.4582 0.45910.4599 0.4608 0.4616 0.4625 0.4633 1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767 2.0 | 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817 2.2 | 0.4861| 0.4864 10.4868 | 0.487110.48TS | 0.4878 10.4881| 0.4884 0.4887 0.4890 2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916 2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936 2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952 2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964 2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.49710.49720.4973 0.4974 12.9 | 0.4981| 0.4982 | 0.4982 | 0.4983 | 0.4984 | 0.4984 | 0.4985 | 0.4985 | 0.4986 | 0.4986 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990 0.4991 0.4991 0.4991 0.4992 0.4992 0.4992 0.4992 0.4993 0.4993 3.3 0.4995 0.1995 0.4995 0.4996 0.4996 0.1996 0.4996 0.4996 0.4996 0.1997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998 B:6 C:9 Vaulx) = 2 D:1 Ansc Aie? 29:令X為平均數 EX)=3 之指數分配隨機變數,則機率 PK > 6) = ? -AX 大 tits e B:1-e' -2x Ciel M-3, M = 3 he LLLLLL 3.0 0.4987 3.1 0.4990 # Nah l-e 3.4 0.4997 Die Ans A A:1 B: 1.5 30 : 令X為平均數E(X)=4之指數分配隨機變數,則條件機率 PK >6|Y>2) = ? A: P(X>6) C: 1.34 Pl (x>6) (x > 2)) P(X>6) P( X2) D: 2 B: P(X> 2) 4 4 P(X>2) e C: P(x > 4) Ansc

待回答 回答數: 0
數學與統計 大學

看不懂表格的數據 有人可以詳細解釋嗎?

其次作雙變項分析,由表四觀察,可知各自變 項與良好飲食行為的相關均為中等至稍弱,最強的 相關為情境自我效能(r=.36 ),其次為自覺障礙 性(r = -25 ),自覺利益性(r.19)與自覺罹患性 =.16)則稍弱而數值較接近,自覺嚴重性及個人自 我效能則沒有顯著相關。 研究者將各自變項放入複迴歸模式中,結果如 表五。達到顯著意義的預測變項為性別(B=.50)、 情境自我效能(B=.42)、自覺障礙性(B=.19)、自 覺利益性(B=.13),自覺罹患性(B-09),整體模 50 黃連具 纸元青 式可解釋的變異量達18%。較值得注意的是:自覺 罹患性對飲食行為的影響係負號,即愈覺得不可能 罹患疾病者,飲食行為愈佳,這是和健康信念模式 所預測的方向相反的。健康信念模式的變項和飲食 行為的相關,在控制社會人口學變項後,也仍然存 在。 表五 各變項對飲食行為之複迴歸係數及解釋變異 量n=451 迴歸係數(6) 標準誤 T值 顯著水準, 自從罹患性 -.09 204 .04 自覺嚴重性 .01 .06 .03 n..s. 自覺障礙性 -.19 .07 .01 自覺利益性 .13 .41 .00 個人自我效能 .04 .04 1.03 n.s. 情境自我效能 .42 .06 6.77 健康狀況 .12 .23 .50 n.s. 年級 .03 .23 .03 n.s. 性別(d) .50 .46 .13 家庭社經地位 .19 .16 1.19 n.s. R-square 車車事 表四 飲食行為與社會心理學變項相關情形 n=451 自觉耀自覺嚴自障自覺利個人自情境自 患性重性礙 性益性我效能我效能 飲食行為 - 16中車 - 25** .19** .09 .36*** **p<.05 ***p<.001 .04 .18 d-dummy variable ES: l-0-3 *p<.05. **p<.01 ***p<.001

待回答 回答數: 0