Mathematics
高中
已解決

黄チャートの数Aの例題26の(3)の問題で、写真の赤線をひいているところなんですけど、なぜ÷3ではなく、÷3!なのかわかりません。解説よろしくお願いします🙇‍♀️

298 基本 例題 26 組分けの総数 9人を次のように分ける方法は何通りあるか。 00000 (1)4人,3人,2人の3組に分ける。 ** (4)5人,2人,2人の3組に分ける。 (2)3人ずつ,A,B,Cの3組に分ける。 (3)3人ずつ3組に分ける。 [類 東京経大 p. 293 基本事項 CHART & SOLUTION 組分け問題分けるものの区別, 組の区別を明確に まず,「9人」は異なるから、区別できる。 1 「3組」 は区別できるが,(3)の「3組」 は区別できない。 (1)3組は人数の違いから区別できる。 例えば, 4人組を A, 3人の組を B, 2人の組をC とすることと同じ。 (2)組に A,B,Cの名称があるから, 3組は区別できる。 (3)3組は人数が同じで区別できない。 (2) で, A, B, Cの区別をなくす。 → →3人ずつに分けた組分けのおのおのに対し, A, B, C の区別をつけると,異なる3個 の順列の数 3! 通りの組分けができるから,[(2)の数]÷3! が求める方法の数。 (4)2つの2人の組には区別がないことに注意。 解答 (1)9人から4人を選び,次に残った5人から3人を選ぶと, (1) 2人,3人,4人の順に 残りの2人は自動的に定まるから, 分け方の総数は 9.8.7.6 5.4 9C4X5C3= =126×10=1260 (通り) 選んでも結果は同じにな る。 よって, C2 ×2C と してもよい。 4・3・2・1 2・1 (2)Aに入れる3人を選ぶ方法は9C3通り Bに入れる3人を,残りの6人から選ぶ方法はC 通り Cには残りの3人を入れればよい。 よって、分け方の総数は 5 9C3×6C3=- 9・8・76・5・4_CLASS =84×20=1680 (通り) 3.2.1 3.2.1 (3)(2) で,A,B,Cの区別をなくすと、 同じものが3! 通り ずつできるから, 分け方の総数は [] (C3×6C3)÷3!=1680÷6=280 (通り) (3) A B C [S] [E] abc def ghi A, B, C abc ghi def の区別が なければ (4)A(5人),B(2人), C (2人) の組に分ける方法は+ ghi def abc 同じ。 9C5×4C2 B,Cの区別をなくすと, 同じものが2!通りずつできるか ら,分け方の総数は ( 9C5×4C2)÷2!=756÷2=378 (通り)

解答

✨ 最佳解答 ✨

このような問題で区別がある状態から区別がない状態へと変化させて考える時、区別をなくす数の階乗で割ることで変化させられます。

例えば、x、y、zと三つのボールを並び替えよとあった時、3×2×1で6通り存在します。
しかし、すべてのボールを同一とみなせばどのように並べても同じですから、1通りです。

ソル

なるほど!ありがとうございました!

留言
您的問題解決了嗎?

看了這個問題的人
也有瀏覽這些問題喔😉