Mathematics
高中
已解決

二つの2次方程式をイコールで結んでそれを判別式Dとして共通の解を持つからD=0としてはいけない理由はなんですか?教えてくだい!お願いします!!!!

を早く ハイスクー A-104-56 重要 例題 102 2次方程式の共通解 00000 2つの2次方程式 2x2+kx+4=0, x2+x+k=0がただ1つの共通の実数解をも つように定数の値を定め、その共通解を求めよ。 基本的 指針 2つの方程式に共通な解の問題であるから,一方の方程式の解を求めることができ たら,その解を他方に代入することによって、 定数の値を求めることができる。 しか し、この例題の方程式ではうまくいかない。 このような共通解の問題では,次の解法 が一般的である。 41212 2つの方程式の共通解を x=αとおいて、それぞれの方程式に代入すると 2a2+ka+4=0 ...... ①, a2+α+k=0 ② これをαについての連立方程式とみて解く す ②から導かれる k=--α を ①に代入(kを消去)してもよいが、3次方程式と なって数学Ⅰの範囲では解けない。 この問題では、最高次の項である2の項を消去す ることを考える。 なお, 共通の 「実数解」 という問題の条件に注意。 CHART 方程式の共通解 共通解を x=αとおく 171 (7) T 3章 12次方程式 共通解をx=αとおいて, 方程式にそれぞれ代入すると 2a+ko+4=0 ...... ①, a2+α+k=0……… 解答 ①-② ×2 から (k-2)a+4-2k=0 ゆえに (k-2)(a-2)=0 k=2 または α=21 [1] k=2のとき よって αの項を消去。この考 え方は, 連立1次方程式 を加減法で解くことに似 ている。 2つの方程式はともに x2+x+2=0となり、この方程式 数学Ⅰの範囲では、 の判別式をDとすると D=12-4・1・2=-7 D<0 であるから,この方程式は実数解をもたない。 ゆえに,2つの方程式は共通の実数解をもたない。 x²+x+2=0の解を求め ることはできない。 [2] α=2のとき ②から 22+2+k=0 よって k=-6 このとき2つの方程式は2x26x+4=0, x2+x-6=0 すなわち2(x-1)(x-2)=0, (x-2)(x+3)=0 とな り,解はそれぞれ x=1,2; x=2, -3 α=2を①に代入しても よい。 よって、2つの方程式はただ1つの共通の実数解 x=2 以上から 共通解はx=2 =-6, 注意 上の解答では, 共通解 x=α をもつと仮定してα やんの値を求めているから 求めた値に対して,実際に共通解をもつか、または問題の条件を満たすかど うかを確認しなければならない。 共通解としてもつとき, 実数の定数kの値は 2つの2次方程式x2+6x+12k-24=0, x2+(k+3)x+12=0がただ1つの実数を であり,そのときの共通解は p.173 EX73 である。

解答

✨ 最佳解答 ✨

画像の解の下の注意を読む。
(k-2)(α-2)=0で、( )内=0になるとこの式が0=0となり、二つの式で連立できなくなるから🙇

留言
您的問題解決了嗎?