Mathematics
國中
已解決

問1、問2があっているか見てほしいです、、、
問1の説明が不安なのですが、付け加えた方が良いことなどありますでしょうか?
ご回答よろしくお願いします!

説明してみよう 小学校では,三角形の3つの角を分度器ではかったり、 右の図のように,三角形の紙を切り、△ABCの 問1 5 3つの角を頂点Cのまわりに集めて, 三角形の3つの角の和は180°である ことを確かめました。 ここでは、これまでに学習したことを使って, (*) m どんな三角形であっても(*) が成り立つことを 10 説明してみましょう。 <b B Aa AA 数学的な 直線AB と DCは どんな位置関係に なっているのかな? ? 平行線を利用して 説明することは できないかな? • すでに学んだ 根拠にして考 平行線の性質 する。 A D 右の図のように, △ABCの頂点Cから,辺BA に 平行な直線 CD をひく。 また, 辺BC を延長した 直線上に点Eをとる。 d このとき, BA // CD で, B 15 平行線の錯角は等しいから, <a=/d ① 平行線の同位角は等しいから, <b = Le ①,②から,三角形の3つの角の和は, C e E 平行線をひき,辺BC を延長 ことで,三角形の3つの角は 頂点Cのまわりに集められる <a+/b+ <c = ∠d+ Le+ L∠c =180° 上のように説明すると,どんな三角形についても (*) が成り立つことがいえる。 B 0° e 6 三角形の3つの
問1 前ページの説明を読み直し, <a+ <b と大きさの等しい角を 見つけなさい。 a また,その理由を説明しなさい。 殺にいえ 三角形の内角と の関係を考える B6 E 5 右の図の△ABC で, ∠BAC などの3つの角を △ABCの内角という。 外角( となり また、1つの辺とその隣の辺の延長とがつくる 内角 角を,その頂点における外角という。 外角 内角 内角 B D たとえば,∠ACD は頂点Cにおける外角である。 「外角 E 10 また, ∠BCE も頂点Cにおけるもう1つの外角で, ∠ACD と ∠BCE の大きさは等しい。 1つの頂点 外角という を 頂点 A, B における外角も同じように考えることができる。 どちらか一 考えること これまでに調べたことをまとめると、次のようになる。 三角形の内角と外角 15 ① 三角形の内角の和は180°である。 とな ② 三角形の外角は, それと隣り合わない 2つの内角の和に等しい。 問2 右の図のように, △ABCの A P 頂点Aを通り, 辺BC に a 20 平行な直線 PQ をひいても, 三角形の内角の和は180°で B あることを説明することができます。 どのように説明すればよいですか。 C Q 数学的 ●ほかの方 ●異なる 考える。
Date IZACE ∠ACB=∠ACEを足すと 180℃になり、Lax2bを 180から引くと、∠ACBと なり、 ∠ACB+∠ACE =1 180° ∠ACB+za+2b=180 で、∠ACE=za+2bと いえるから。 2 PQ1BCなので、 錯角は等しく、∠B=∠PAB Lc=2QAC La+2b+2c=za+2PAB+2QAC といえる。 =180° といえるので、三角形の内角 の和は180°である。 136
中学 数学 外角 内角

解答

✨ 最佳解答 ✨

画像貼りますね。
問2はバッチリok👌です。

・–・

ベストアンサー遅れてしまい申し訳ありません🙇‍♀️
ご丁寧な解説わかりやすかったです!!
ご回答ありがとうございました╰(*´︶`*)╯

かき

わかっていただけたならよかったです。
ベストアンサーはあんまり気にしてないので大丈夫です❗️

留言
您的問題解決了嗎?