Mathematics
高中
已解決
7n ➕50と2n➕16の最大公約数が6になるような50以下の自然数nを全てもとめよ。と言う問題です。1番最後の12の倍数は除くとありますが、なぜ12の倍数は除かれるのかわかりません。どなたか教えてください
最大公約数6······
ユークリッド互除法より
7h+50=12n+16)・3+n+2.
6h+48
2n+16=(n+2) ・2+12
2n+4
わられる数とわる数の最大公約数
[[
←りがきえたら
注 おわり
わる数をあまりの最大公約数
7h+50と2n+16の最大公約数は2nt1bとn+2と等しく、
2n+168n+2の最大公約数はnt)と1と等しい。
7n+50と2n+16の最大公約数はht2と1の
最大公約数より、nt2.12の最大公級数は6
htは6の倍数
また1≦h≦50
3n+2≦52
2の倍数は除く
(30) 30
h+2 = (6). 12. (18). 14. (30) (1.4.4
解答
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉
たしかにそうですね👍🏻ありがとうございます!