Physics
高中
已解決
なぜ2つのおもりを一体として考えられるのですか?
第1編■力と運動
の位置
191 糸でつながれた2物体の単振動 ■質量mおよ
び2mの2つのおもりが図1のように糸でつながれ,ば
ね定数kのばねにつるされて, つりあいの位置で静止し
ている。図2のように2つのおもりを鉛直下向きにdだつりあい
け引き下げたあと. 時刻 t=0 で静かにはなし,糸がた
るまないように鉛直方向に単振動させた。重力加速度の
大きさをg とし, おもりは鉛直方向にのみ運動する。ば
ねと糸の質量, 糸の伸び, 空気抵抗は無視してよい。
(1) 単振動の周期T とおもりの速さの最大値 v を求めよ。
T
(2m)
-0
「d
m
図1
l l l l l l l l l l l l
(2m)
x
m
図2
(2) 変位 x をつりあいの位置から図のようにはかるものとする。 xの時間変化のようす
をグラフに示し, 時刻 t でのxを式で表せ。
(3) 変位がxのときの糸の張力の大きさSを求めよ。
(4) dを大きくしすぎると糸がたるむようになる。 糸がたるむことなく2つのおもりが
単振動できるdの最大値を求めよ。
[神戸大改
192 102 405
(4) 糸がたるむことなく単振動するには、 糸の張力≧0
(1) 糸がたるまないから, 2つのおもりを一体とみなして考える。 ばね定
m
数がk,おもり全体の質量が3m であるから,周期 Tは「T=2π~
J
k
102
小
より
すら
T=2π
13m
k
この単振動の振動の中心はつりあいの位置(x=0) なので、振幅はdで
2π
あり, 角振動数はω=
==
T V3m
√
k
であるから、 速さの最大値 v は
k
0 1
「最大=Aw」 より Vo=d₁
3m
(2) t=0 のとき x=dで静止していたから,
T=2k
3m
海乱のグラフは図』のような + cos
d+
解答
解答
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉
ありがとうございます🙇🏻♀️՞