Mathematics
國中

(ii)の問題の解説を教えていただきたいです🙏🏻
答えは点Fと点Hです。

次の問いに答えなさい。 右の図1のように。円の周上に3点A,B,Cをとる。 また、点Bを含まないAC上に, 2点A,Cとは異なる点 Dをとり CBDの二等分線と円Oとの交点のうち,B とは異なる点をEとする。 さらに,線分 AEと線分BDとの交点をFとし,線分 AC と線分BDとの交点をG,線分 AC と線分BE との交点をH とする。 このとき、次の(i), (ⅱ)に答えなさい。 (i) 三角形 AFDと三角形BHC が相似であることを次のよ うに証明した。 (a)(b)に最も適するものをそれぞれ 選択肢の1~4の中から1つ選び、その番号を答えなさい。 [証明] △AFDと△BHC において, まず. (a) | に対する円周角は等しいから. ∠ADB=∠ACB よって, ADF = ∠BCH 次に DEに対する円周角は等しいから、 <DAE=∠DBE また,線分 BE は CBD の二等分線であるから. (b) 3 ② ③ より ∠DAE=∠CBE よって, ∠DAF=∠CBH ①. ④ より 2組の角がそれぞれ等しいから, AAFD ABHC [B 図1 F () D H (a) の選択肢 1 AB 2 AD 3.BC 4. CE b)の選択肢 1. ∠ACB=∠AEB 2. ∠AHB=∠CHE 3 <CBE=∠DBE 4. ∠EAC=∠EBC ( 8つの点A, B. C. D, E, F.G. Hのうちの2点A,Bを含む4つの点が、円と は異なる1つの円の周上にある。 この円の周上にある4つの点のうち、点Aと点B以外の2 点を書きなさい。
図形

解答

尚無回答

您的問題解決了嗎?

看了這個問題的人
也有瀏覽這些問題喔😉