Mathematics
高中
この問題なんですが、解いたら写真のようになりました。このグラフはどのようになるのか教えて頂きたいです。
関数 f(x)=x-3x2 + 3x が極値をもつかどうか調べよ。
応用
S
4 次関数の
2
f(x)=x3-3x2+3x
f(x)=3²-3-2x+3
=322-6x+32
= 3(x²+2x+1)
= 3(x-1) 2² )
f(x)=0のときx=1
増減表は、
1
0+
1
f(x)は常に増加するので
f(x)は極値をもたない
K
f(x) +
f(x)
解答
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉
推薦筆記
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8929
116
数学ⅠA公式集
5652
19
詳説【数学Ⅱ】第3章 三角関数(前半)~一般角の三角関数~
4872
18
詳説【数学Ⅰ】第三章 図形と計量(前半)~鋭角鈍角の三角比~
4550
11