Mathematics
大學
数学IIの質問です。
この問題の計算ってなぜ
sin2乗θ+cos2乗θ=1を使うんですか?
またなぜルートをつけているのですか?
教えて頂きたいです。
26
教p.135
2
αの動径が第2象限, βの動径が第1象限にあり, sina =
cos β=1のとき, 次の値を求めよ。
(1) sin(a+β)
(3) cos (a+β)
指針 相互関係と加法定理 cosa, sin β の値がわかれば, 加法定理により値が求め
られる。径のある象限から, Cos a, sin β の符号を判断し、 相互関係
sin'0+cos²0=1 を用いて, Cosa, sin β の値を求める。
cos a < 0
解答 αの動径が第2象限にあるから
βの動径が第1象限にあるから
sin ß>0
よって
cosa=-√1-sin α =
=-
=
3
= 1
(2) sin(a-β)
(4) cos(a-β)
3
5
3√5 +8
15
2
3
=
sinβ=√1-cosep=
(1) sin (a +β) = sin a cos β + cos a sin β
-x²+(-√5) x4-6-45%
2 3
4_6-4√5
-X-
十
15
4
=
5
3
(2) sin(α-β)=sin a cos β-cos a sin β
6+4√5
15
(3) cos (a+β)=cos a cos β-sin a sin β
3
2 4
- (- √5) × ² / - / - /
X
-X
3
5
3
5
√5
3
(4) cos(a-β)=cosacos β + sin asin β
3√5-8
15
3¹
解答
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉