Mathematics
國中
已解決
(2)について、2枚目の証明でもあっているか教えてほしいです。
3 右の図1で四角形 ABCD の4つの頂点図/
は,すべて同じ円の周上にあり, AB AC/
である。
線分 AD を D の方向へ延ばした直線と
線分BC を C の方向へ延ばした直線の交点
をE,線分 AC と線分BD の交点をF,
点Cを通り線分BD に平行な直線と
線分 AEとの交点をGとする。
次の各問に答えよ。
Da
B
Ob
A
a
F
bte
D
C
Ca
〔問1](1) 図1において,∠BAC=α, <CAE=6°とするとき, ∠BEAの大きさは何度か。
α, bを用いて表せ。
MOTORGSTJENÝ AKAN CIN
✓ (2)
(2) 図1の中に △ACD と相似な三角形がいくつかある。 その中から1つを選び, 選んだ
三角形を解答欄に示せ。 また、選んだ三角形が △ACDと相似であることを証明せよ。
ORSTA AASAN
AS
-HA ACDE AAECT = Jou ?
#311259). ZCAD = Z EAC...
1572 59 AB = ACT=Y. LABC. = LACB
DC (= 4√3 171159) < DAC = <DB C
ADに対する円周角より<DCA=∠DBA
<ABC = <DBC = < DBA = <DAC+ <DCA = <ACB
"e
LADC = 180° ~ (<DAC+ <DCA) (3)
LACE = 180° - LA CB = 180º = (4BBC+CDBA) D
= LACE"
より2組の角がそれぞれ等しいので△ACDOMAEC
解答
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉
推薦筆記
【数学】覚えておいて損はない!?差がつく裏ワザ
11153
86
【夏勉】数学中3受験生用
7259
105
【テ対】苦手克服!!証明のやり方♡
6962
61
数学 1年生重要事項の総まとめ
4281
82
そう言っていただけて嬉しいです😊
円に内接する四角形の対角の和が180°になることを使って再度証明してみようと思います!
丁寧に回答してくださりありがとうございますm(_ _)m