Mathematics
高中
已解決

⑵の問題で、なんで0<α<π/4となるんですか??

At Ant ( 例題 162 例題 思考プロセス 1164 三角関数の最大 最小 〔4〕… 合成の利用 (1) 関数 y = sin03 cos (0) の最大値と最小値, およびそ のときの0の値を求めよ。 537831=0ex+Wmia (1) (2)関数 y = 4sin0 +3cost (0≦a≦ サインとコサインを含む式 (1) y = sin0-√3cost 合成 ↓ « Re Action asin0+bcos0 は, rsin (0+α) の形に合成せよ 例題 163 0 ≤ 0 STA 0 - 2 sin (0-5) 3 サインのみの式 y = The 0- よって したがって π 2 π 0-3--== (1)y=sin0-√3cose π OSOS D - 50 - sze π より 2 π 3 3 3 B 0≤0 ≤ VII π ≦ (2) 合成すると,αを具体的に求められない。 nai →αのままにして, sinα, cosa の値から,αのおよその目安をつけておく。 π ≤ 1/2 kb より ≤ sin (0-3) 2 sin (0-5) π 2sin(0- 3 √3≤sin(0-3) ≤1 2 -√3=2sin (0) 2 π 3 y = 4sin0 +3cos=5sin (0+α) とおく。 3 ただし, αは cosa= 5 TT 10-10/1 sina = a ≤0+ a ≤ から 2013 sin (+α) ≦1 5 3 ≤ 5sin(0+ a) ≤ 5 £h, y l Don の最大値と最小値を求めよ。 17 π 2 すなわち 0 = のとき最大値2 5 6 S +0)nie S = 8800+aja S + 18 +α すなわち0=0 のとき 最小値-√3 図で考える gie)S-680-anie S - & ・① を満たす角。 ①より0<a<こであり、sina < sin (+α) である 4 Danies +1 T 3 O 40= 3 38Typ 100 2 2010 最大値 5,最小値3 2 O -1 10- +0m2 300 S P a 1x √3 2 = } -1| $3@1=1 (3) YA S>020 3 x R 〃 1 x 3 YA -1 0 [出] 4 AR sina sin (+α) ≦1 ■ 164 (1) 関数 y = sind-cost (0 ≦)の最大値と最小値,およびそのときの 練習 ma 4/1 x 5 0 の値を求めよ。 376 3 1 = 0800+Onia (1) (2) 関数y=5sin0 +12cos (0 ≦)の最大値と最小値を求めよ。 n311 問題164 3 章 1 加法定理 10 293
三角関数

解答

✨ 最佳解答 ✨

cosa=4/5=0.8>1/√2,sina=3/5=0.6<1/√2

故に、0<a<π/4

𝘶𝘳𝘶

わかりました!!ありがとうございます🤲🏻

留言
您的問題解決了嗎?