Mathematics
國中
已解決
関数の問題の(2)についてです。
解説を見ても何故点Rのy座標が3になるのかよくわかりません。どなたか教えて下さい🙇♀️
標準
応用
関数
3
下の図の①,②,③は,それぞれ関数y=ax², y = 4, y=1のグラフである。①と②の交点の
x座標の小さい方から A,Bとし, ①と③の交点のうちx座標が負の点をCとする。
y=ax²
(1) AB=8のとき,点Bの座標とαの値を求めよ。
1
また、このとき, 点Cの座標と, 直線BCの式をy=4
点B(4.4)
a = 4
(-2,1)
求めよ。
こ
点C(-2,1) BC:y=1/23x+2
(2) (1) のとき、傾きが正の原点を通る直線④が,右の
図のように②, ③ および線分BCと交わる点をそ
れぞれ P, Q, R とする。 BP :CQ=1:2のとき,
点Rの座標と三角形 BPRの面積を求めよ。
BC:y=2x+2
(
日
12
B (4,4)
(,1)
y=1
(3)
A
2
2
99
y
BC a=
e
点(4,4)
点C(-2,1)
¥2
R
P (1)
B
x
a ==
169
1³ + x²x² ± 2
2
4 = x²
y=1/23x+2
1= -1 + b
b=2
x=-2
が点
これ①に代入して
y=3×6-10
よって交点の座標は,(6,8)
関数y=-x2(-2≦x≦1) のグラフは、下の図
(4)
の実線部分である。
では,-4≦y≦0
-2≤x≤0
0≦x≦1では、-1≦y≦0
したがって,yの変域は,
-4≤y≤0
y=8
y=
y
-2 O 1
よって、 a=
-1
(5) 関数y=1/32x2(-3≦x≦√3) のグラフは,下の
図の実線部分である。
-3≦x≦0 では 0≦y≦6
0≦x≦30≦y≦2
よって, yの変域は, 0≦x≦6
ly
1
SRED
2
y=-x²=(LAƏ
6
08-08 (1
GROUPE
=1086-(2)
3
(1) AB=8 より Bのx座標は4である。
よって, B (4,4)
関数y=ax2のグラフが点Bを通るから,
4=aX42
DES DAS
O √3
S
14
このとき、点Cはy=21212xとy=1の交点であ
るから,
x2=4
点Cのx座標は負より, x=-2
よって, C(-2, 1)
直線BC の方程式をy=mx+n とおくと,
4=4m+n
1=-2m+n
これらを連立して解くと,
=1/12, n=2
よって,直線 BC の方程式は、y=1/1/2x+2
(2) BPRCQR であるから,
BP CQ=PR QR
BP : CQ = 1:2より,
PR: QR=1:2
よって, 点 R のy座標は3である。
直線BC の方程式 y = 1212x+2に,y=3 を代入し
て、
3=123x+2
11/12 x = 1
x=2
よって, R (2,3)
したがって,直線④の方程式は, y=2012 x とな
る。ここで,点Pのy座標は4より,
3 x=40-911
x=
8/3
m=-
18
よって, Peo, 4
3'
したがって, 三角形 BPR は, BP を底辺とみる
CO ANOS 8)
底辺の長さは, 4-883 = 1 3
8_4
y=1/²r²
A
高さは, 4-3=1
だから、求める面積は,
12/2x128×1=13/08
y=1
y=4
01 +42-1=
C
-2
y
4
2
3
10
y=
R
(MATO
3-2
x
P1
28
|数学
3
B
4x
2cm
まっすぐ
長さが違う
2.5cm
2
0
RI
(,1)
P. (4).
32
②
3
PQの線分の比を
こっちで使っても大丈夫ですか?
解答
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉
推薦筆記
【数学】覚えておいて損はない!?差がつく裏ワザ
11166
86
【夏勉】数学中3受験生用
7262
105
【テ対】苦手克服!!証明のやり方♡
6963
61
【夏まとめ】数学 要点まとめ!(中1-中3途中まで)
6305
81
ありがとうございます🙇♀️無事解けました!
途中で気がついたのですが,PQの線分の比を利用してy座標を求める考え方って写真の考え方であっていますか?お手数おかけしてすみません💦