解答

✨ 最佳解答 ✨

32 連続する3つの偶数をそれぞれ2x-2,2x,2x+2とする。ただし,xは整数である。
  (2x-2)+(2x)+(2x+2)=6x
  xは整数なので,6xは6の倍数である。
  したがって,連続する3つの偶数の和は6の倍数である。

34 2桁の自然数を10A+B (Aが10の位,Bが1の位)とする。ただし,AとBは正の整数である。
  また,この自然数の10の位と1の位の数を入れ替えた自然数は10B+ Aとなる。
  (10A+B)+(10B+A)=11A+11B=11(A+B)
  AとBは整数なので,11(A+B)は11の倍数である。
  したがって,2桁の自然数と,この自然数の10の位と1の位の数を入れ替えた自然数の和は11で割り切れる。
 

K a n o n

ありがとうございます!
難しい問題なのに凄いですね!!

留言
您的問題解決了嗎?