Mathematics
大學
已解決
極限値が0になることを証明する問題(2)を解きましたが、あってるでしょうか?そして不十分なところはあるでしょうか?
よろしくお願いします。
VI1. eを自然対数の底とするとき、関数げ(z) = e-“" と、そのヵ次(ヵ階)
導関数 "(>) を考える。 以下の問いに答えよ。
(1) 79(z) = (<)6- と表すとき、多項式ヵ」(z),およびの(7) を求めよ。
(2) 任意の非負整数たに対して、
jm z*7(z) =0
ターオoo
となることを示せ。
(3) 次の広義積分
十Co
7ニ / か(2p(e)7(<)dz
0
の値を求めよ。
い ーー
3部 xs xYe eS
Kつプル@〇 \ に ーーーーーーーーー
K2+ の ーya4Q cx | = Agおと)
ー トX - ヵ .k-て
ンー、 ーーデーュービー 員。 ー入 ーー
ウイペ DXeズ“ っ メダもっ pX*
_ トト
よっ、Ae =上0p> (WS2 )
= uw プー。 bn =
zaao eX yoto ん ex+ 一 V
て > Mr Xー- > 5 _ Le 1
る* yke イマXs^ ーネラ*の on^~ こり
いい しマ 、 リー _-
「 し します、 Mae yy 多zwa) = my てこり
4り っ>パー! のい
] h 1 の7 (す4 ヽ nw >(W- る) 0sm-0 ー My- | 泊-! _
| ーー ヽ - よい ルト 5 て) >U
en 私にとーートを
るJIぶ
内 6
CX)(Kっ2) 『 lx
L3X +4 Je
枯 XX ぴ/ {| |
7。 ー ーー ーー
4X ど u で Jo < > 0- =う5.
こう -K N 0 と
IA= 5 js* xe^* W
の | SSY1 jm
XX ・てる? "6 WW 、 ュ
にGoTorted
解答
解答
なず様
解決済みの質問ですが、
(2)について、補足します。
参考にしていただければ、幸いです。
Take様
2つも別解を解説していただいてありがとうございます!
テーラー定理ははさみうちを使うんですね。次の機会に使ってみたいと思います。
対数もあるのすっかり忘れてました…。しかしklogx-x²の極限は自分には解けなかったような気がします。logxがx²より遅いのはわかりますが、xをくくりだして分数を作る手法ははじめて見るかもしれません。∞×0はダメですが、∞×(0+∞)は大丈夫なんですね。
Take様
またの補足ありがとうございます!
分数の形にできなくても足し算と引き算を積の形にすればだいたい解けそうですね。極限が∞のときに使うもののような感じがします。
テーラーの定理の問題をロピタルで試したんですが、なかなか解けなかったですね。やはりこの問題はテーラーの定理のほうがいいです。…と書いてたらひらめいてt=1/xとおいたら解けました。
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉
回答ありがとうございます!
一般項の展開が間違ってましたね。階乗っていう感じ定数でした。気をつけなきゃ。
そういえばクリアノート開いて哲治さんがランキングに出ててびっくりしてました。すごいですね!