✨ คำตอบที่ดีที่สุด ✨
αとβがともに1より小さい⇔α-1とβ-1は負の数⇔(α-1)+(β-1)<0, (α-1)(β-1)>0
2つ目と3つ目が同値であることの証明
⇒は明らか
⇐の証明
(α-1)(β-1)>0のとき、「α-1>0かつβ-1>0 または α-1<0かつβ-1<0」である。この2つの条件のうち、(α-1)+(β-1)<0を満たすのはα-1<0かつβ-1<0である。
ちなみに「αとβがともに1より大きい」(今度は「大きい」)を
「α+β>2, αβ>1」としてはいけない。(もちろん「小さい」でもこんなことをしてはいけない)
例えばα=4, β=1/2は「α+β>2かつαβ>1」を満たすがこのときβ=1/2<1
(α+β>2はもちろんOKで、悪いのはαβ>1の方)
詳しく解説していただきありがとうございます!