Mathematics
มัธยมปลาย
เคลียร์แล้ว
1.這兩小題的z是不同形式的數時,算法不同
但為什麼實數要這樣算?
2.我看解答第二小題,線段AB'的方程式求出後
題目要求函數最小值,但為什麼可以直接y=0代入
如果y代負數值不是更小嗎
15. 設 f(z)=2-1-[+|2+2-3/
(1)若≈ 為複數,則f(z)的最小值為何?
3+√16
3+576
atb
=
2
a
-20-b-6
a
(2)若≈為實數,則f(z)的最小值為何?又當f(z)有最小值時,2之值為何?
15. f(2) = |2 − (1 + i)| + |2-(-2+3i)|
表示複數之與1+2+3兩數的距離和
OLE
設P(z),A(1+i),B(−2+32)
(1)當P(2)在AB上時
f(z)有最小值AB= (-2-1)²+(3-1)' = v13
(2)作B(−2+3)對實軸(x軸)的對稱點
B'(-2-3i)
當P(z)為AB'與實軸(x軸)的交點時
f(z)有最小值 AB'= (-2-1)2+(-3-1)2=5
AB'的方程式為
y-1--3-| (x-11=4(x-1)
令y=0代入得 x=4
80
∴當f(2)有最小值時,z=
虛軸
B(-2+31)
4
Op)
40:00
-)=
x(a)
A(1+i)
OX P(z)
- 實軸
:0=1+
++(1-2)
B'(-2-3i)
คำตอบ
ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?
เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉
สมุดโน้ตแนะนำ
[107學測]數學觀念總整理(上)
5064
39
[106學測]更新囉!!!一到四冊超強大數學
3983
44
[107學測]數學觀念總整理(下)
3629
18
高中數學1-4冊公式整理
2596
4