Mathematics
มัธยมปลาย
เคลียร์แล้ว

(2)のマーカーで囲った部分について質問なのですが、なぜx=4,5とわかるのでしょうか?

79 |発 例題 <<< 標準例題 36 ★ 展 46 連立不等式が解をもつ条件 00000 x<6 連立不等式 ① 2x+3≧x+α の解について,次の条件を満たす定数 αの 値の範囲を求めよ。 (1) 解をもつ。 (2)解に整数がちょうど2個含まれる。 2章 CHART & GUIDE 連立不等式の解の条件 数直線で考える 1 各不等式を解く。 不等式 ② の解はx≧〇(αの式) ②の形。 ... 2 数直線上に,条件を満たすように範囲 ① ②' を図示することでαの不等 式を作り, それを解く。 例えば, (1) では ① ②'の共通範囲が存在する ことが条件であるから,右のような数直線を考 えて ○<6 という (αの) 不等式を作る。 6 x 解答 ②を解くと xa-3 (1) 連立不等式が解をもつための条件は α-3<6 これを解いて a<9 (2) α <9 のとき,①,②' の共通範囲は ...... a-3≦x<6 これを満たす整数xがちょうど2個あるとき, その値は x=4,5であるから, α-3が満たす条件は ① -113+1523-11-2009 3 < a-3≦4 各辺に3を加えて Lecture 不等号に=が含まれる・含まれないに要注意! 上の解答でをα-3≦6 としてしまうと, α-36 すなわち α=9 のとき②' が x≧6 となり、①と②' の共通範囲が存在しなく なるので誤りである。 ① a-3 ① 3 4 5 6 x a-3 (1) α=9のとき ② 発展学習 また,イについても, 3, 4 を α-3 の値の範囲 に含めるかどうかに注意が必要である ( →右図参 照)。 6 x (2) 3=a-3(a=6) のとき (2) a-3=4(a=7)のとき 心に 3 4 5 6 x 1456 整数の解は3個で, ダメ。 整数の解は2個で, OK。 X TRAINING 46 ⑤ 3x-7≦5x-3 の解について,次の条件を満たす定数 αの値の範囲を求

คำตอบ

✨ คำตอบที่ดีที่สุด ✨

a<9ならa-3<6。6より小さい整数がちょうど二つあるなら、6は入らないから4,5が入る。だから、a-3が3と4の間にある🙇

ロン

a-3が3よりも小さいというのはありえない話なのでしょうか?

ロン

a-3=0 →a=3だからということですか、、?

🍇こつぶ🐡

a-3が3よりも小さいというのはありえない話なのでしょうか?
>3よりも小さくなると、整数が2つでなく、3個以上になるからダメ🙇

🍇こつぶ🐡

a-3=0 →a=3だからということですか、、?
>これだと3も入るから整数が3つになりダメ🙇

ロン

よくわかりました!
わかりやすく解説していただきありがとうございました^ ^

แสดงความคิดเห็น
ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉