Mathematics
มัธยมปลาย

下線部のところを教えてください🙏

OO0。 の分数の数列につい。 550 基本 例題112詳数列の応用 10 11 5 7 8 9 3 4 5 6 4 1 1'2 2 2'3'3'3'4'4'4 [類東北学院大) 初項から第210項までの和を求めよ。 ャ 指針> 分母が変わるところで 区切り を入れて,群数列 として考える。 分母:1|2,2|3, 3, 3|4,4, 4, 4|5, 3個 4個 第n群には、分母がnの分数がn個あることがわかる。 分子:1|2,3|4, 5, 6|7, 8, 9, 10| 11, 分子は、初項1,公差1の等差数列である。すなわち,もとの数列の項数と4、 1個 2個 しい。 まず、第210項は第何群の何番目の数であるかを調べる。 解答 分母が等しいものを群として,次のように区切って考える。 6|7 1|2' 2|3'3'3|4'4'4' くもとの数列の第k項項はら 子がkである。また、第 群は分母がkで,k個のキ を含む。 4これから,第n群の最後。 10|11 4|5 1|2 3|4 5 8 9 第1群から第n群までの項数は 1+2+3+………+n= 数の分子は (n+1) 第210項が第n群に含まれるとすると (n-1)n<2105n(n+1) よって (n-1)n<420Sn(n+1) (n-1)n は単調に増加し,19-20=380, 20-21=420 であるから, のを満たす自然数nは また,第210項は分母が 20 である分数のうちで最後の数であ る。ここで,第n群に含まれるすべての数の和は n=20 -20-21=210 2 e(nー1)+1+(n-1)-1|=n="+1 は第n群の数の分子 の和→等差数列の和 2 ゆえに,求める和は 1-(+り-(2142) 1/ 20-21·41 +20 6 n(2a+(n-1)d) k=1 2 (k=1 k=1 =1445 練習 2の累乗を分母とする既約分数を,次のように並べた数列 112 1 1 31 3 5 7 1 3 5 2'4' 4 8' 8' 8'8' 16' 16'16' 15 32' 1 について,第1項から第100項までの和を求めよ。 16 【類岩手大) Cs CamScannerでスキャン p.556 EX74

คำตอบ

ยังไม่มีคำตอบ

ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉