Mathematics
มัธยมปลาย
PT=1になる理由が分かりません。
教えていただきたいです。
よろしくお願いします。
QC
_h
9
エ=
よって
これを解いて
4 辺 ABに関して点Qと対称
な点をSとする。
RQ=RSであるから
PR+RQ=PR +RS
PR+ RS が最小となるのは、
3点P, R, Sが1つの直線
上にあるときである。
R
B
T
ここで、AASR=AAQR であるから
AS=AQ=2,
LSAR=ZQAR=45"
LSAQ=90"
ゆえに,点Sから辺1BCに下ろした最線を ST とす
ST=4, Tl
直角三角形 SPTにおいて、三平方の定理により
よって
ると
SP=VST +PT=v+=V17
VI7
よって, PR+RQの最小値は
4 BC=CA=4, ZC=90°である △ABC において, 辺 BC
6 上の点Pは BP=1 を満たす。また, 点Qは辺 CA の中点で
ある。辺AB上を点Rが動くとき, PR+RQ の最小値を求
(C
めよ。
R
0月1Bに対して点のと対称な点をSとする。1
ロ
さ B
PV
C
つ
คำตอบ
ยังไม่มีคำตอบ
ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?
เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉
สมุดโน้ตแนะนำ
数学ⅠA公式集
5659
19
詳説【数学Ⅰ】第三章 図形と計量(前半)~鋭角鈍角の三角比~
4551
11
詳説【数学A】第3章 平面図形
3606
16
詳説【数学Ⅰ】第三章 図形と計量(後半)~正弦・余弦定理~
3530
10