Mathematics
มัธยมต้น
横向きですみません!
(2)の問題です
私のは大中小のどれかが偶数ならば他の2つのサイコロはどの数字でも良いと考え、またそれぞれのサイコロは区別するので3×6×6×3=324通りだと思ったのですが、
解説を見ると6^3-3^3で積が奇数になる場合の余事象であることがわかりました。
確かに私の解答は6^3の数を超えてしまっておかしいことはわかるのですが、私の考えのどこがおかしいのかがわからないので教えていただきたいです!!
重要
4 大中小3つのさいころを同時に投げるとき, 次の場合は何通りあるか。
(1) 目の和が偶数になる場合
ぐぐぐ
ぐきき
3°+ 3×3×3×3
27+ 8|- 108通り
(2) 目の積が偶数になる場合
大中小
3x6~6×3:324通り
3×6x6
で
คำตอบ
ยังไม่มีคำตอบ
ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?
เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉
สมุดโน้ตแนะนำ
【夏まとめ】数学 要点まとめ!(中1-中3途中まで)
6305
81
【高校受験】数学 ポイント&公式総まとめ
1254
2
本当は誰にも言いたくないレベルの裏ワザ集2
831
28
【中2数学】確率
726
16