学年

質問の種類

数学 高校生

Aの座標が3a,3bなのはどうしてですか?

116 基本 例題 67 座標を利用した証明 (1) △ABCの重心をGとするとき, AB2+BC2+CA2=3(GA2+GB +GC)が 成り立つことを証明せよ。 CHART & THINKING y 基本 例題 68 p.112 基本事項 31 51 座標を利用した証明 座標を利用すると、 図形の性質が簡単に証明できる 場合がある。 そのとき、 座標軸をどこにとるか, 与 えられた図形を座標を用いてどう表すかがポイン トとなる。 そこで, あとの計算がスムーズになるよ うに、座標軸を定める ② 変数を少なく A(x1, y₁) B(x2,y2) (x+y+xy+x+a) C(x3,y2) 0 ↓辺BC をx軸上に。 y ★3点A(5,1 Dの座標を求 CHART & 「平行四辺形】 頂点の順序が いことに注意。 形のパターン Dの座標を求 2本の A(x1,y) ( 1 0 を多く くるように0 が多くなるようにとる。 1 問題に出てくる点がなるべく多く座標軸上に O B(x2, 0) C(x3, 0) を利用すると もっとよい方法は? 2つの頂点を原点に関して対称にとる 解答 残りの頂点 — 変数の文字を少なくする。 これらをもとに, 点 A, B, C の座標を文字でどう表すかを考えよう。 直線 BC をx軸に,辺BCの垂直 理由? ←10を多く 二等分線をy軸にとると, 線分三二a,36) BCの中点は原点0になる。 A(3a, 36), B(-c, 0), C(c, 0) ← ② 変数を少なく G(33 平行四辺形 [1] [1] 平 線分 D したが [2]平 線分 G(a,b) とすると, Gは重心であるから, 01 A(a, b) とすると, b B C となり計算が G(a, b) と表すことができる。 このとき AB2+BC2+ CA2 ={(-c-3a)+(-3b)2}+{c-(-c)}+{(3a-c)2+(36)2} =3(6a2+662+2c2) ・① (-c, 0) O (c,0) x 少し煩雑。 した 両辺を別々に計算して 比較する。 [3] = 線分 GA2+GB2+GC2 ={(3a-a)2+(3b-b)2}+{(-c-a)+(-b)2} +{(c-a)+(-b)2} =6α²+6b2+2c2 ①② から AB2+BC2+CA=3(GA2+GB2+GC2) 注意 更に都合がよくなる ようにと, A(0,36)など とおいてはいけない。この 場合, Aはy軸 (辺BCO 垂直二等分線) 上の点に 定されてしまう。 以上 PRACTICE 67° (1) ∠ABCの辺BCの中点をMとするとき, AB'+AC'=2(AM'+BM)(中線定理) が成り立つことを証明せよ。 (2)△ABCにおいて, 辺BC を 3:2 に内分する点をDとする。このとき, 3(2AB2+3AC2)=5(3AD2+2BD) が成り立つことを証明せよ。 P

解決済み 回答数: 1
英語 中学生

どうやって覚えたらいいですか。

3年生ま ※1・2年生で登場したはページをイタリ ※1・2年生ですでに学んでいて、3年生では登場しない! 過去分詞形 cutting 33 Stand 過去形 cut hitting teach 現在形 10 QUEER ☐ tell stand(s) cut hit hurting 21 A-A-A THE PRI ☐ チェックページ cut(s) hit hurt letting 50 think teach(es) cut 59 hit(s) hurt let putting 34 think(s) hit hurt(s) let put 85 reading win D hurt let(s) put read D ②② let put(s) setting A-B-C read set D 8 put read(s) set チェックページ ☐ 23 read set(s) D 2 set □ D コ 16 come 7 63 run A-B-A チェックページ 23 become become(s) became come(s) run/s) 原形 現在形 過去形 過去分詞形 came ran become come 現在分詞形 becoming 11 原形 ☐ be 31 現在形 ☐ coming running 36 begin am/is/are understand tell(s) 過去形 stood told thought understand(s) understood win(s) won 過去分詞形 stood taught told thought standing understood teaching telling taught 現在分詞形 won thinking 過去形 understan winning bear ☐ run ☐ 736 begin(s) break bear(s) was/were began 過去分詞形 been 900 choose break(s) bore begun being 現在分詞形 ☐ do 31 choose(s) broke bom begin 過去分詞形 ☐ 過去形 B-B型 ページ 30 63 bring 現在形 原形 bought bought buying 27 buy's) buy bring(s) brought brought bringing ☐ 178 draw do(es) chose broken bear drink draw(s) did chosen brec building ☐ eat drink(s) drew done cho build(s) built built 51 build catch(es) caught caught catching ☐ 57 digging ☐ ②② catch dug dig(s) dug feeling ☐ felt ② dig feel(s) felt ¥2 feel 4 fight fight(s) fought fought fighting ☐ 5247 12 fall eat(s) drank drawn do fly fall(s) ate drunk dr ② forget fly/flies fell eaten d get forget(s) flew fallen find find(s) found found finding ☐ give get(s) forgot flown had having ☐ 75 have have/has had hear hear(s) heard heard hearing ☐ hold hold(s) held held holding ☐ 4334 go give(s) got forgotten go(es) gave gotten/got given grow went hide grow(s) gone grew keep keep(s) kept kept keeping know hide(s) grown hid ☐ eave leave(s) left left leaving 12 ride know(s) hidden knew ☐ se lose(s) lost lost losing ake make(s) made made making an mean(s) meant meant meaning et meet(s) met met meeting d rebuild(s) rebuilt rebuilt rebuilding say(s) said said saying sell(s) sold sold selling send(s) sent sent sending sit(s) sat sat sitting sleep(s) slept slept sleeping spend(s) spent spent spending 0000000000 10 52 602223 ride(s) known see rode see(s) ridden show saw sing show(s) showed seen shown 29 sing(s) speak sang Sung 2 steal speak(s) spoke spoker 37 swim steal(s) stole stolen swim(s) Swam SWUm 4 take take(s) took taken ①②1 throw throw(s) threw throw 2 wake wake(s) woke wok 49 wear wear(s) wore WO 10 write write(s) wrote WT

解決済み 回答数: 1
数学 高校生

基本例題94(3)の解説黄線部(下から2行目) 代入・整理しても答えが違うので、計算過程を教えてください🙇

154 基本 例題 94 2つの円の交点を通る円 直線 ・・・・・・② について 2つの円は、異なる2点で交わることを示せ。 2つの円x+y=5 ...... 1, (x-1)2+(y-2)²=4 (1) (2) 2つの円の交点を通る直線の方程式を求めよ。 (3)2つの円の交点と点 (0, 3) を通る円の中心と半径を求めよ。 CHART & THINKING (1) 2つの円の半径と中心間の距離の関係を調べる。 000 基本 77, p. 139 基本事項 (2)(3)2つの円の交点の座標を求めることは面倒。 そこで、 次に示すか.129 基本例題 77 の考え方を応用してみよう。 2曲線 f(x,y)=0,g(x,y)=0 の交点を通る曲線 方程式 kf (x, y)+g(x,y)=((は定数)を考える ①,②を形にして,k(x+y2-5)+(x-1)+(y-2)^-40 ③ とすると, ③は2つの円の交点を通る図形を表す。 (2) ③が直線を表すときのんは? (3)③が点 (0, 3) を通るときのは? 解答 (1)円 ①,② の半径は順に5,2である。 2つの円の中心(0,0),(1,2)間の距離をdとすると d=√12+22=√5から √5-21<d<√5+2 よって, 2円 ① ② は異なる2点で交わる。 (c)+( (2)k(x2+y2-5)+(x-1)+(y-22-40(kは定数)・・・・・・ ③ とすると,③は2つの円①,② の交点を通る図形を表す。 これが直線となるのは k=-1のときであるから, ③ に k=-1 を代入すると +(x-1)+(y-2)2-4=0 x+2y-3=0 (3)③ (03) を通るとして ② 半径2 (2) 2, (3) -k= 1 x k=-1 Ir-r'<d<rty' inf③は円 ①を表す ことはできない。 ③がxyの1次式と なるように, kの値を 定める。 inf (2) の直線の方程式 と①の円の方程式を連 立させて解くと,直線と 円の交点, すなわち2つ ①と②の交点が求 められる。 (x2+y2-5) 整理すると ③ に x=0, y=3 を代入して整理 ① すると4k-20 よって k= 1/2 半径5 20% これを③に代入して整理すると (2)+(14)-20 29 9 よって中心 ( 31 ) 2 2 3' /29 半径 - Ee 3 RACTICE 942 k(02+32-5) +{(-1)^+1-4}=0 2つの円x2+y2=10,x2+y2-2x+6y+2=0 の2つの交点の座標を求めよ。 また, 2つの交点と原点を通る円の中心と半径を求めよ。 0

未解決 回答数: 1
数学 高校生

この問題の(1)の解説の、√2/√3a²がどうやって√6/3aになったのかがわかりません、、教えてください🙇‍♀️

を 141 基本 例題 138 正四面体の高さと体積 1辺の長さがαである正四面体 ABCD がある。 (この正四面体の高さをαの式で表せ。 (2)この正四面体の体積をαの式で表せ。 CHART & THINKING 空間図形の問題 平面図形 (三角形) を取り出す 0000023 基本137. 重要 139 (1) 頂点Aから底面 BCD に垂線 AH を下ろすと,AH が正四面体の高さとなる。AHを 求めるために、どの三角形を取り出せばよいだろうか? AB=ACAD であることに, まず注目しよう。更に,点HはBCDのどのような位置にあるかを考えよう。 (2) 四面体の体積の公式において, (1) で求めた「高さ」に加えて何を求めればよいかを判断 しよう。 解答 (1) 正四面体の頂点Aから底面 △BCD に垂線AH を下ろすと, AB=AC=AD であるから △ABH=△ACH=△ADH よって BH=CH=DH D B ゆえに、点Hは BCD の外接円の 中心で,外接円の半径はBH である。 よって, BCD において, 正弦定理により 1 a a BH= = 2 sin 60° 3 したがって AH=√AB2-BH= = a². 2 a a A (1) AABH, AACH, △ADH は,斜辺の長さ がαの直角三角形でAH は共通辺である。 直角三角形において, 斜 辺と他の1辺が等しいな らば互いに合同である。 CD sin DBC -=2R CD=α, <DBC=60° △ABHに三平方の定理 を適用。 4章 15 三角形の面積、空間図形への応用 2 √6 = 3 3 a ? B a H (2) BCD の面積は a.a sin 60°- よって、 正四面体 ABCDの体積は √3 = a² 4 4 1/13 = ABCD AH-1√361 /2 a= 3 3 4 12 RACTICE 1383 ABCD の面積 -BD・BCsin∠DBC (四面体の体積 ) =113×(底面積)×(高さ)

解決済み 回答数: 2
数学 高校生

画像の問題でなぜa=0の場合も考えなければならないのですか。 また下の問題ではa=0の場合を考えずに解いていたのですが何の違いですか。

重要 例題 56 1次関数の決定 (2) 101 ののののの 関数y=ax-a+3 (0≦x≦2) の値域が 1≦ysb であるとき、定数a,bの 値を求めよ。 基本 49 CHART & THINKING グラフ利用 端点に注目 1次関数とは書かれていない。 また, 1次の係数の符号がわからないから, グラフが右上 がりか、右下がりかもわからない。 このようなときは,αが正, 0, 負の場合に分けて考えて みよう。 →a>0 のときグラフは右上がり, a<0 のときグラフは右下がり。 a>0, a=0, a<0 の各場合において値域を求め、 それが 1sysb と一致する条件から a. bの連立方程式を作り、 解く。 このとき,得られたαの値が場合分けの条件を満たしているかどうか確認することを忘れ ずに。 解答 x=0 のとき y=-a+3, x=2のとき y=a+3 [1] α>0 のとき [1]y この関数はの値が増加するとyの値も増加するから x=2で最大 b, x=0で最小値1をとる。 3 7 関数とグラフ よって これを解いて +3=b, -α+3=1M a=2, b=5 んで これは α>0を満たす。 wwwwwwww [2] α=0 のとき -a+3 70 よん?! この関数は α=0 の場合を忘れない y=3 ように。 このとき, 値域は y=3 であり, 1≦ybに適さない。 定数関数 [3] α <0 のとき [3].y この関数はxの値が増加するとyの値は減少するから, x=0で最大値 b, x=2で最小値1をとる。 ba+3 よって -a+3=b, a+3=1 これを解いて α=-2,6=5 これは α<0 を満たす。 [1]~[3] から (a, b)=(2, 5), (-2, 5) PRACTICE 56 定義域が −2≦x≦2, 値域が −2≦y≦4 である1次関数を求めよ。 (2) 関数y=ax+b b≦x≦b+1) の値域が-3≦y≦5であるとき、定数a, b の 値を求めよ。 が正って なんでわかるのか

未解決 回答数: 1
数学 高校生

この赤枠のところがしっくり来なくて、、教えて欲しいです、、-1/2が120°で-1が180°?なのはわかったのですが、それからがよくわからなくて、教えて欲しいです、、

補充 例題 三角方程式・不等式 180°とき,次の方程式・不等式を解け。 (1) 2cos20+5sin0=4 CHART & THINKING 0812029 2sin2+3cos0 <0 基本 112, 補充 117 三角比で表された2次の方程式・不等式 1つの三角比で表す かくれた条件 sin20+cos20=1 を利用して, sin0 または cos0 いずれか1種類の三角比の 方程式・不等式に直して解く。 (1) coseがあるから, sin20+cos20=1 を cos'01-sin' と変形して代入すると sind だけの式になる。ここで sind=t とおくとについての2次方程式に帰着できる。そ の際, tの変域に注意しよう。 (2)と同様に考える。 sin20+cos'0=1 をどのように利用すればよいだろうか? 解答 (1) sin+cos20=1より, cos'0=1-sin' であるから 2(1-sin'0)+5sin0=4 sinの2次方程式。 整理して 2 sin20-5 sin0+2=0 sin0=t とおくと,0°0≦180°から このとき, 与えられた方程式は 0≤t≤1 ①0°M180°のとき 2t2-5t+2=0 0≤sine≤1 24 0812 (2t-1)(t-2)=0 これを解くと t= ① を満たすのは t= すなわち sin0= 2 150° 1 1 2 よって、 求める解は 0=30° 150° (2)in+cos20=1より, sin20=1-cos'0 であるから 2 (1-cos20)+3cos0 <0 整理して 2 cos20-3 cos 0-2>0 cosa=t とおくと,0°≦180°から 1x COSの2次不等式。 -1≤t≤1 ・20°M180°のとき このとき,与えられた不等式は 2t2-3t-2>0 -1≤cos 0≤1 (2t+1)(t-2)>0 これを解くと t<-12<t 34 ② との共通範囲を求めると小8-0 -1≤t< 2 すなわち -1≦cos<12/ よって、求める解は 120°0180° P 1 120° -1 0 1x 12

解決済み 回答数: 1
数学 高校生

(2)の問題でaの二乗を求めた時に出た答えを約分しちゃダメな理由とaの二乗から二乗を外さないで計算する理由を教えてほしいです!!

P.210 基本 基本 例題 132 多角形の面積 次のような図形の面積Sを求めよ。 (1) AB=6,BC=10, CD = 5, ∠B=∠C=60°の四角形ABCD (2) 1辺の長さが1の正八角形 CHART & THINKING (1) まずは右のように図をかいてみよう。 基本131 からSを、それぞ 多角形の面積はいくつかの三角形に分割するのが基本方針 だが,対角線 AC, BD のどちらで分割するのがよいだろうか? ACで分割→ △ABCに余弦定理を用いると、線分AC の 長さは求められるが,DACの面積はすぐにはわからない。 BD で分割 → △BCD は BC:CD=2:1, ∠BCD=60° に 注目すると, ∠DBCの大きさや線分 BD の長さがわかる。 これを利用して △ABD の面 積を求めてみよう。 6. 5 60° 60° B 10 C 4章 解 (1) (後半) ロンの公式を用 =4+5+6 から って =√s(s-as- (2) 正八角形の外接円の中心を通る対角線で8つの三角形に分割すればよい。 解答 (1) BCD において, BC=10, CD = 5,∠C=60°から ∠BDC=90° ∠DBC=30° BD=BCsin60°=5√3 6 5√3 157 15 22 30° 15/7 △ABD において ∠ABD= ∠ABC-∠DBC=30° 30° 60℃ 4 よって, 求める面積は B 10 60° S=△BCD+ △ABD _n 150° 150=- =1/23・5・5√3+1/23・6・5v3 sin30°=20√3 (2) 正八角形の外接円の中心を0, 1辺をAB とすると AB=1, ∠AOB=360°÷8=45° OA=OB=α とすると, OAB において, 余弦定理により 12=α²+α2-2aacos 45° 整理して 1=(2-√2)a² s150°=- ゆえに a²=- 1 2-√2 2+√2 2 よって, 求める面積は S=8△OAB=8asin45°=2(√2+1) 8.1/23a'si PRACTICE 132Ⓡ 合同な8個の三角形に分 ける。 A 1 B a 45% a αのまま代入する。 )は鈍角三 次のような図形の面積を求めよ。 (1)AD // BC, AB=5,BC=6,DA=2,∠ABC=60°の四角形ABCD (3)1辺の長さが1の正十二角形 (2)AB=2,BC=√3+1,CD=√2,B=60°,C=75° の四角形ABCD 15 三角形の面積、空間図形への応用

未解決 回答数: 1
数学 高校生

数Aの約数と倍数の問題です この問題の「つまり」の部分のあとの波線の部分 がどうしてそうなるのかが分かりません

例題 112 n! に含まれる素因数の個数 一解したとき、 次の問いに答えよ。 から30までの自然数の積 30!=30.29········ 2.1 をNとする。 Nを素 000 素因数2の個数を求めよ。 素因数の個数を求めよ。 p.426 基本事項 3 Nを計算すると、末尾には 0 が連続して何個並ぶか。 HART & THINKING □=1.2.3......(n-1)nの素因数々の個数 からまでのんの倍数 の倍数 の個数の合計 130には, 右の表に付いたの数だけ2が掛け合 わされる。つまり、 30 以下の自然数のうち、2の倍数, …………… の個数の合計が, 30!に含 2の倍数 23の倍数, まれる素因数2の個数になる。 ? 2 4 6 8 16 28 30 20000 0 00 22 0 0 0 なお、以下の自然数のうち, αの倍数の個数は, n をαで割った商として求められる。 23 O 0 24 □ 末尾に0が1個現れるのはどのようなときだろうか? 1から30までの自然数のうち 2の倍数の個数は, 30を2で割った商で 15個 22 の倍数の個数は 30を2で割った商で 2 の倍数の個数は, 30を2で割った商で 7個 22の倍数は素因数2を 3個 2個もつが、2の倍数と して1個 22の倍数と 2 の倍数の個数は 30を2で割った商で 1個 よって、 素因数2の個数は 15+7+3+1=26 (個) して1個数えればよい。 (1)と同様に5の倍数は6個, 5の倍数は1個あるから,それぞれ30÷5,30÷5" 素因数5の個数は 6+1=7 (個) (1)(2)から,Nを素因数分解したとき, 素因数2は26 個, 素因数5は7個ある。 2・5=10であるから,Nを計算すると、 その数の末尾には 0が連続して7個並ぶ。 の商。 素因数25を掛けると 末尾に0が1つ現れる。 素因数5の個数分だけ 0が並ぶ。 風料

解決済み 回答数: 1
1/90