学年

質問の種類

情報:IT 高校生

どうして学年は 特に注意する必要があるに入らないんですか?

携帯電話に関するアンケート ○回答者について ○携帯電話について ・学年:()年 ・一日の利用時間:( 家族構成 : ( 人家族 ・家庭学習時間:( )時間程 ・よく使うアプリ: (132) ・一日の通話時間:( 15 〈個人情報の提供) ある学校内で携帯電話に関するアンケート調査を行うことにな 思考り、次の回答用紙を作成した。 10個の質問項目のうち、個人情報保護の観点で回答 の取り扱いを特に注意する必要がある情報をすべて選べ。 分程 問題文 Check OSocial Networking Service 人と人とのつながりをインター 上で構築するサービスのことをい ②SNSでユーザを識別するため 情報として 「SNSのアカウント 使われる。 ベストフィット 分程 ・睡眠時間:( )時間程 ・一か月の小遣い : ( 円 一日のSNS投稿回数:( ) ・SNSのアカウント名:( ) 個人情報は,氏名,住所, も含まれる。 1日、性別以外にも, 家族構成 績,健康情報,犯罪歴などの 解答 家族構成、一か月の小遣い SNSのアカウント名 解説 家族構成 その人の家庭生活などの情報も個人情報に含まれる。 一か月の小遣い→その人の経済活動などの情報も個人情報に含まれる。 ・SNSのアカウント名→アカウント名から特定の個人が識別できる場合(例:jikkyo_ichiro),そのアカウン それ自体が単独で個人情報に該当することがある。 review 個人情報の例 個人情報の例としては、右の表のようなものがあげら れる。これらの情報は, むやみに他人に教えるものでは なく,アンケートなどで調査を受けても回答には慎重に ならなければならない。 ながるため同会の歌 内容 基本的事項 例 氏名、住所、生年月日、 年齢,国籍 こんいんれき また、個人情報を収集する側も, 情報漏洩などがない ように、厳重に管理する必要がある。 家庭生活など 社会生活など 経済活動など 親族関係, 婚姻歴, 家族 居住状況など 職業・職歴、学業・学歴 賞罰 成績・評価など 資産収入・借金・預金なる 信用情報, 納税額など

未解決 回答数: 0
数学 高校生

この二ページ目のセソタチについて質問で、3ページの方に(段違いになって申し訳ないのですが)信頼区間に当てはめて幅を考えているようなのですが、2はどこから来たものでしょうか?標準偏差をかけているのでしょうか。 公式を見た感じかける所がないので質問させて頂きました! 解説お願い... 続きを読む

数学Ⅱ・数学B・数学C (2) あゆさんたちは、 自分と同じクラスの人たちが持っている,今人気のあるアー ティストの音楽のCDの枚数を知ることができたが、 現在の日本の高校生が持っ しているそのアーティストのCDの枚数が知りたくなった。 しかし, 日本の高校生 全員にアンケートをとることは大変な手間がかかるし, 現実的ではない。 そこで, SNSを使って日本の高校生の中から100人を無作為に選んでアンケートをとった。 その結果,平均3標準偏差2ということがわかった。 このことからあゆさんたち は、日本の高校生全員を母集団としたとき,母平均を推定することにした。 (i) 日本の高校生全員を母集団とし,その中からSNSを使って100人の標本を無 作為抽出したとみなす。 母集団において、持っているCDの枚数をXとし,確率 ク 標本の標 変数Xの分布において, 母平均をm, 母標準偏差をとする。SNSを使って無 作為抽出した100人の標本の標本平均Xの平均は,E(X)= 準偏差は, (X)= ケ となる。 ク ケ に当てはまる最も適当なものを,次の①~⑤のうちから一 つずつ選べ。 ⑩ √m ①m m² ③ 0 ④ 0 0 ⑤ 10 10 100 (ii) 標本の大きさ100が大きいので,標本平均 X の分布は, コ とみなすこと ができる。 Xを標準化した確率変数 Z= サ の分布は標準正規分布となる。 コ サ に当てはまる最も適当なものを,次の①~⑤のうちから つずつ選べ。 Ⓡ N(m, 10) ①N(m, 1000) 2 2 ②Nm, 10000 ③ X-m 0 √10 ④ X-m ⑤ X-m 0 10 100

解決済み 回答数: 1
数学 高校生

19の(2)の問題です。 黄色の丸のところなのですが、どうして分子が3(2^n− 1− 1)ではないのでしょうか?

320 数学B = 12 n(n+1)²(n+2) [別解 求める和をSとすると S=12+(12+22)+ (12+2+32) ++ (12+22 + = Σ (1² + 2ª² + -......-+ k²) = Σk(k+1)(2k+1) k=1 16 = (2k³+3k² + k) = (2 k³ +3 k² +Źk) 6k=1 k=1 -1/12 1/12 n(n+1) +3.1/n(n+1)(2n+1)+ •+n²) n+1)(2n+1)+n(n+1)] 1n(n+1){n(n+1)+(2n+1)+1} [参考] 和は (2) で表すこともできる。 an=a+ n-1 Σ3-2-1=1+ k=1 3(2-1-1) 12+12+12++12 2-1 2+2+......+22 32+... +32 成り立つ。 +) ゆえに,一般項は an=3.2"-1_9 また, 初項 α=1 であるから,上の式は n=1のときにも公比2項数n-1の等 =3.2-1-2 第1章 数列 321 1章 比数列の和。 PR k=1 はこれを縦の列ご とに加えたもの。 よって Sn= (3.2-1-2)= och k=1 3(2-1) 2-1 初項は特別扱い。 -2n =3.2"-2n-3 PR (1) Sn=2n2+n (2) Sn=5"-1 ②20 (1) n≧2 のとき 初項から第n項までの和Sが次の関係式を満たすような数列{an} の一般項am を求めよ。 (3) Sn=3n2-2n+1 PR ②19 次の数列の第n項を求めよ。 また, 初項から第n項までの和を求めよ。 (2)1, 4, 10, 22, 46, (1) 1, 7, 17, 31, 49, an=S-S-1=(2n²+n)-{2(n-1)2+(n-1)} =(2m²+n)-(2m²-3n+1)=4n-1 また, n=1のとき HINT n≧2, n=1の 場合に分けて考える。 =Sに着目。 35,4 a=Si=2.12+1=3 し 与えられた数列の一般項をanとし, 初項から第n項までの和 をSとする。 [HINT ゆえに an=4n-1 よって, an=4n-1 は n=1のときにも成り立つ。 a=4.1-1=3 また、数列{a}の階差数列を {bm} とする。 階差数列利用の注意 ① n≧2」 とする 2 αは特別扱い (2)n≧2 のとき an=Sn-Sm-1=(5"-1)-(5-1) n-l =(5-1)・5"'=4・5"-1 また, n=1のとき a=Si=5'-1=4 (1){6}:6,10, 14, 18, 1 7 17 31 49 これは,初項6, 公差 4の等差数列である。 よって, an=4・5-1 は n=1のときにも成り立つ。 a=4.5=4 n-l 差 : 6 10 14 18 ゆえに bn=6+(n-1)・4=4n+2 よって, n≧2 のとき n-1 ゆえに an=4.5-1 n≧2 を忘れない。 (3) n≧2 のとき So≠0の場合は, an が an=SnSn-1 1つの式で表せない。 n-1 an=a1+(4k+2) ← (n-1)n k=1 k=1 =1+4•- (n-1)n+2(n-1) =2n2-1 また, n=1のとき また,初項 α=1であるから, 上の式は n=1のときにも 成り立つ。 初項は特別扱い。 よって, an=6n-5 は n=1のときには成り立たない。 ゆえに α=2, n≧2のとき an=6n-5 <a₁=6-1-5=1 ゆえに,一般項は an-2n2-1 =(3m²-2n+1)-{3(n-1)2-2(n-1)+1} =(3m²-2n+1)-(3m²-8n+6) =6n-5 a=St=3・12-2・1+1=2 (本冊基本例題 20 の n INFORMATION 参照) よって S=(2-1)=22-21 k=1 k=1 k=1 =2.—n(n+1)(2n+1)—n = n(2n²+3n+1-3) =1/13n(n-1)(n+2) (2){bm}:3,6,12,24, PR 次の数列の初項から第n項までの和を求めよ。 ②21 2 k2 (1) 2 2 13'35' 5・7' 1 (2) 1・5'59' 9・13' k=1 =n(n+1)(2n+1) 1 4 10 22 46 (1) この数列の第k項は 2 (2k+1)-(2k-1) (2k-1)(2k+1) (2k-1)(2k+1) ゆえに、初項から第n項までの和は 2k-1 2k+1 ( 1 D) + ( 1 D) + ( 1 D) + + (2n-1 2n+1) (1)+(孝一)+(第一分)+ bn=3.27-1 これは,初項3,公比2の等比数列である。 ゆえに 差: 3 6 12 24 2n =1- よって, n≧2のとき n≧2 を忘れない。 2n+1 2n+1 途中の 111 3'5'7' が消える。 2n

解決済み 回答数: 1
1/120