学年

質問の種類

数学 高校生

24番の(2)の解説の最後の方で判別式を使っている理由が分かりません(Pの値に関わらず成り立つ→判別式D<0⇐?)

思考プロセス 求める2次関数を y=ax2+bx+c とおく。 ← 頂点の 条件はないから一般形でおく。 条件の言い換え /直線 y=2x-1 心 x=1で接する { [y=ax2+bx+c y=2x-1 を連立すると, α(x-1)=0 の形になる。 702 5 求める放物線の方程式を よって y=ax2+bx+c (0) a= 4 これを①に代入して この不等式がの値にかかわらず成り立つから. -p+mp-3-0の判別式をDとすると D<0 all pe 25 [区間に定数を含む関数の最大・最小] f(x)=x10x+18 よって したがって 120 2/5 <m<2/3 式の全体に絶対値記号 とおくと, 直線 y=2x-1にx=1で接するから 方程式 ax+bx+c=2x-1 は重解 x=1 をもつ。 (1) y= (x-1)+(2x-1) AI (定数) の形であるから (2) よって ax²+bx+c-(2x-1)=a(x-1)2 となるから y=ax+bx+c =a(x-1)+(2x-1) ... D と表せる。 これが, 点 (1,2)を通るから 2=α(-1-1)+(-2-1) (x-2x+1)+(2x-1) 心 (x²-2x+ 1 1 = ·x+ 4421 た したがって、求める放物線の方程式は A=± (定数) f(x) のグラフは y=x10x + 18 のグラフを [y 0 の部分はそのままにして、 ly < 0 の部分はx軸に関して対称に折り返す。 図で考える (最大値)7となるためには, a Sx Sa+4 は y= x+ 2 1 4 大阪 24 [放物線がx軸から切り取る 線分 ] (1) 条件の言い換え 50 + \y=mx-3 y 思考のプロセス ①がx軸と異なる2点で交わる y=0とした方程式の (判別式) 0 (①の頂点のy座標) > 0 問題で与えられた他の条件から どちらが計算しやすいか考える。 BO AA-4 B x軸から切り 取る線分 y- 「αより右側」 かつ 「βを含む」 かつ 「yより左側」 β-a=y-B√14 <4であるから, 例えば、 「x=αで最大かつx = β [ a+4 「に含まれない」 場合はない。 (1) f(x) = 7 より |x10x +18|-7 (i) x10x + 187 のとき x-10x+11= 0 よって x = 5±√14 (i)x10x + 18 7 のとき x-10x +25=0 (2) y=f(x) のグラフは次のようになる x-10x+18=±7 |A-7 のとき A=±2 18 思考のプ a-5 β-5 となる. (x-5)=0 このときの ABの長さをm で表す。 よって x=5 (2) (①とy軸の共有点のy座標) ①の頂点が直線 O (i), (ii)より ←y=mx-3上にある x=5±√14,5 = g = -p+mp -3 求めるものの言い換え y=-po+mp-3 の値にかかわらず-p+mp-30 となるmの値の範囲 1) 放物線 ① の頂点は直線 y=mx-3 上にあり, 頂点のx座標が-4であるから, y 座標は -4-3である。 したがって, 放物線 ①がx軸から切り取る線分の 長さは -4+√-4m-3-(-4-√ -4m-3) 放物線 ①は上に凸であるから, x軸と異なる2点 (a, b) (2 301 =2√-4m-3 4m-3) で交わるためには -4m-3 0 頂点に関する条件が与 えられているから, (2)y=-xp ++g より 放物線 ①の頂点 の座標は (p,p+g 1121210 3 (頂点の座標) > 0 よって m<- 4 から考える。 これが直線 y=mx-3 上にあるから p'+q=mp-3 p²+mp-3 ここで、①は y=(x+4)-4m-3 と表され るから,①とx軸の交点のx座標は よって -(x+4)-4m-3=0 (x+4)=-4m-3 x=-4±√-4m-3 q= よって, 放物線 ①とy軸の共有点のy座標は -mp-3であり, これが負となるから -p+mp-3<0 5 0 15-14 5+14 ここで, 5-(5-√14)=√14 < (5+√14)-5=√14 <4である が7となるのは 5-√14sa かつ as5 かつ a+ 3 のときである。 ①より ② より 1≤a≤5 a≤ 1+√14 したがって、 求めるαの値 5-14 sasit

回答募集中 回答数: 0
数学 高校生

なぜ図1のような図が出てきたのかわからないです。半径1の球が三角形の円周上を回るのに半球の図が出てきたのが何故なのか教えて頂きたいです。

問題を 空間内に1辺の長さが4の正三角形があり,半径1の球の中心が この三角形の周上を一周するとき,この球が通過する部分の体積を求 動かす」とい めよ. [横浜国立大〕 《解答》 正三角形を含む平面に垂直で,この平面が x = 0 となるよう にx軸を定める. 平面 x = t (−1 ≦t≦1) による球の切り口は、半径 √1-12 (=r)の円である(図1).題意の立体 D のxによる切り口 D は、半径rの円の中心が平面x=t内で一辺の長さが4の正三角形の辺上を 一周する (図2) ときの円の通過領域に等しい (図3). これを扇形3個,長方 形3個、正三角形から内側の正三角形を除いた部分に分割する ここで1辺 の長さが4の正三角形の内接円の半径R は, 面積に注目すると 1.42 sin 60° = 2 2 11.R.(4+4+4) :: R = 2√3 3 2 の正三角形との相似比は (R-r): Rであり,面積は(R-F) 3 倍になる。 よって、図4の斜線部の面積は 図4の内側の正三角形の内接円の半径は R-rになるので, 1辺の長さが4 • 1 .42 sin 60° {1 - (R=r)²)} = 12r - 3√31 12r-3√3r2 2 だから、切り口 D の面積は r2m +4.r×3 +12r - 3√3r2 = 24+ (π-3√3) 2 = 24√1-12 + (π-3√3)(1-12) したがって、求める体積は dt 2/" (24√1-12 + (x-3√3×1-1³) 41 = = 48.77 +2(−3√3). 1/1 4 407-4√3 〔第1項の積分は半径1の四分円の面積

未解決 回答数: 1
1/966