学年

質問の種類

数学 中学生

√42が無理数であることの証明についてです。 m=√42nなのでmが2よりも大きくなるのはわかるのですが、nがなぜ2よりも大きいといえるのかが分かりません。(青線部)教えてください。お願いします。

答 √42 が有理数であると仮定すると √42mm,nは自然数)と表される。 n =√42nとし、両辺を2乗すると m²=42n2... ① 結論を否定。 無理数でない ⇔有理数である m≧2.n≧2であるから,m, n を素因数分解したものをそ6<42くから。 れぞれ m=pip2.pk (P1, P2,, De は素数) n=gg....... (g1, Q2,, q は素数) とし、①に代入すると 2. 2. Di2DzDk2=2・3・7g2q2qi2 ここで,②の左辺の素因数の個数は 2k個 右辺の素因数の個数は 21+3個 の断り書きを忘れず に。 42=2・3・7 ② 偶数個。 奇数個。 すなわち、 同じ数が2通りに素因数分解されることになり、参考 ②で、2の素因数の 素因数分解の一意性に反する。 よって, 42 は有理数でない, すなわち無理数である。 個数が, 左辺は偶数個, 右辺は奇数個であること から矛盾を導いてもよい。 数学Ⅰの 「命題と証明」の単元においても,上の例題と同じような問題を背理法で証明する ことを学ぶが (p.80), そこでは,pg を 「1以外に正の公約数をもたない (互いに素であ 約数と倍数

回答募集中 回答数: 0
物理 高校生

(2)の緑のマーカのところで、急にsをかけたのって①のpsを使うためですか? そういう発想ってなかなか思いつかなくないですか?慣れですか?

114 第2編■熱と気体 リードC 基本例題 43 気体の状態方程式 239,240 解説動画 なめらかに動く質量 M [kg] のピストンをそなえた底面積 S[m²] の円筒 形の容器に, 1molの理想気体が入っている。 重力加速度の大きさをg 〔m/s'], 大 気圧を po [Pa], 気体定数を R [J/(mol K)] とする。 (1) 気体の温度が T[K] のとき,容器の底からピストンまでの高さ lはいくらか。 Do 1 mol 質量 M (2)加熱して気体の温度を To [K] からT[K] にした。 気体の体積の 増加 ⊿V はいくらか。 底面積 S 指針 ピストンが自由に移動できるから、気体の圧力』は一定である。 解答 (1) 気体の圧力を [Pa] とすると, カ ③式②式より Pos のつりあいより Post pAV=R(T-To) pS-poS-Mg=0 pS= pos+Mg 「pV=nRT」 より p(Slo)=RTo ①式を代入して (poS+Mg)lo=RT 4V= ......① R(T-To) T Þ Mg lo Mg PS ps __RS(T-To) To T DS RS(T-To) = [m3] RTo よってl= [m] poS+ Mg (2) 加熱の前後で 「pV =nRT」 を立てて 前:pSl)=RT 後: p (Slo+⊿V)=RT ......② ・③ poS+ Mg [参考] 圧力が一定のとき, 体積の変化量⊿V と温度の変化量4Tの間には、 「AV=nRAT」 の関係がある。 この関 係を用いて解いてもよい。

解決済み 回答数: 1
1/1000