学年

質問の種類

物理 高校生

(1)について教えてください。 加速度を求める公式として2枚目の公式を習ったのですが答えは違う公式を使っています。2枚目の公式はいつ使う物ですか🙇‍♀️?

(基本例題 3等加速度直線運動 x軸上を一定の加速度で運動する物体が、 時刻 t=0sに原点Oを正の向きに12.0m/sの速度で 出発した。 その後, 物体はある地点で折り返し、 t=5.0sには負の向きに8.0m/sの速度になった。 (1) 物体の加速度の向きと大きさを求めよ。 t=0s 0 t=5.0s 12.0m/s 8.0m/s (2)物体が折り返す時刻と、このときの物体の位置(x座標) を求めよ。 (3)t=5.0sでの物体の位置(x座標)と,この時刻までに移動した距離を求めよ。 解答 (1) 加速度をα[m/s] とすると,v=vo+αt から, -8.0=12.0+α×5.0 よって, a=-4.0m/s² x軸の) 負の向きに 4.0m/s^ (2) 折り返す地点での速度は0m/sである。 折り返す時刻をt[s] とすると, = v +αt から, 4 [m/s] 12.0 0=12.0+(-4.0)xt よって, t=3.0s S₁ 3.0 5.0 0 このときの位置をx[m] とすると, x=vot+/12/12 から, Sa t(s) -8.0 x=12.0×3.0+ 1/2×(-4.0)×3.02=36-18=18m (3)4=5.0sでの位置をx'[m] とすると, x=vot+ 1/12から 時刻・・・ 3.0 s, 位置…18m x=12.0×5.0+1/2×(-4.0)×5.0°=60-50=10m 10 X 18 (2)の結果から, t=3.0s 以降は負の向きに移動するので、 t=5.0sまでに移動した距離 s 〔m〕は. 別解 右上のtグラフの面積S, 〔m) Sz[m] を用いて, s=Si+Sz=18+8.0=26m x'=S,-S=18-8.0=10m 途中で運動の向きが変わる 場合は、 s=18+ (18-10)=26m 位置・・・10m, 移動した距離...26m (移動した距離) 原点からの変位 運動の式)」を使うか

未解決 回答数: 1
数学 高校生

青チャート数学Ⅲ77ページの練習45です 重要例題45の⑵と同じ様に 練習45もこのようにやったら間違いですか?

(1) すべての自然数nに対して、1+1が成り立つことを証明せよ。 1 1 k=1 1 (2) 無限級数1+ n + +....+ +...... は発散することを証明せよ。 2 3 ・基本 34, 重要 44 指針 (1) 数学的帰納法によって証明する。 (2) 数列{1} は0に収束するから、p.63 基本例題 34のように,p.61 基本事項 ② を利用する方法は使えない。 そこで, (1) で示した不等式の利用を考える。 n2" とすると k=1 k k=1 1/11/ 4 ここで,m→∞のときn→∞となる。 (1) k ≥1/12+1 ① とする。 無限級数 阻 解答 [1] n=1のとき k=1k 1/2=1+1/2=1/1/3+1 よって, ① は成り立つ。 +1 [2]n=m(m は自然数)のとき,①が成り立つと仮定すると100+ このとき 2 11+1 k=1 k (+1)+2+1 2m+1 k=2m+1 k 1 1 + ++ 2m+2 2m+1 > m2m2 1 1 +1+ + ++ 2m+1 2m+2. 2m+2m_ 1 m+1 +1+ .2m= +1 2m+1 2 よって, n=m+1のときにも ① は成り立つ。 1 12m+1=2m2=2"+2" 1 1 2m+1 2+2+2 (2+) 2m+k (k=1, 2,., 2-1) [1] [2] から, すべての自然数nについて①は成り立つ。 (2)S=2とおく。 n≧2" とすると, (1) から k=1 k m m Sn≥ +1 ここで,m→∞のときn→∞ で lim (7/27 +1)=0 .. limSn=∞ m-oo 8012 したがっては発散する。 an≦bnでliman=∞⇒limbn=∞ (p.343②) 72-00 12-00 n=1n 重45の結果を開いて、無限級数学は発散 0 (2)より、 m を示したい 同様に n Th=8とおく。≧とすると、 k=1 12/2計++言を計計+2より 2m m Th≥ 8 +1 : lin Th=00 " 題意は示された

未解決 回答数: 1
理科 中学生

中学一年理科、生きている地球の問題です。 四角4(2)②がわかりません。 答えは2枚目です。よろしくお願いします。

地層のつな いき 図は、ある地域の 地点Ⅰ 0m 地点Ⅱ 地点Ⅱ地点Ⅳ の地点Ⅰ Ⅱ. ちゅうじょう たてじく である。縦軸の目 おもりは地表からの深 における柱状表 5m- 地表からの深さ A れき岩 砂岩 m 泥岩 10m (1) 凝灰岩 IC を表している。ま EX 15m (2) ① 地点Ⅰ~ⅣVは標 とうかんかく なら だん がすべて同じであり, 一直線上に等間隔で, 地点Ⅰ 地点Ⅱ, 地点 地点の順に並んでいるものとする。 ただし、この地域には, 断 やしゅう曲、地層の上下の逆転はなく, 地層が一定の方向に傾いて 広がっている。 (茨城県改題) ぎょうかいがん かたむ 図の凝灰岩のように,遠く離れた地層が同時代にできたことを調 べる際の目印となる地層を何というか。 地点Ⅰ~Ⅳをふくむ地域の地層が堆積した環境について 次の① ②の問いに答えなさい。 すな どろ ① れき, 砂,泥のうち, 河口からもっとも離れた海底に堆積する ものはどれか。 ②地点Ⅲが堆積した期間に、この地域の海の深さはどのように変 化したと考えられるか。 図の地層の重なり方に注目して書きなさ い。なお, A~Cは海底でつくられたことがわかっている。 3 地点ⅣVを調べたとき, 凝灰岩がある深さとしてもっとも適当なも のを、次のア~エの中から1つ選びなさい。 ア 19~20m イ24~25m ウ 29~30m エ34~35m じょうはつざら すうでき 04 岩石Xのかけらを採取し, 蒸発皿に入れ, うすい塩酸を数滴かけ たところ、気体が発生してとけた。 岩石 X として適当なものを,次 のア~エの中から1つ選びなさい。 がん ア斑れい岩 イ 安山岩 せっかいがん ウチャート エ石灰岩 (3

未解決 回答数: 1
1/1000