学年

質問の種類

数学 中学生

解説の丸で囲まれているところはなぜこうなりますか?

-x(cm) だから, PB を1辺とする正方形の面積は, (6-x)=x-12x+36(cm²) ① ② より AP を1辺とする正方形の面積と PB を 1辺とする正方形の面積の和は、 x+x12x+36 =2x-12x+36 PC=AC-AP=3x (cm) だから. PCを1辺とする正方形の面積は、 (3-x)=x²-6æ+9cm²) CB を1辺とする正方形の面積は、 3=9(cm³) (a. c) (5, 1), (6, 2), (7, 3), (8. 4). (9. 5) の5通り。 なぜ? =5c=1のとき、 b=2,3,4の3通り 同様にして, (a,c)=(62)(73) (84),(9.5) 2 の場合についてももの値は3通りずつある。 3 {P.27} ......④ ....5 ④ ⑤ より PCを1辺とする正方形の面積と CB を 1辺とする正方形の面積の和の2倍は、 (x²-6x+9+9) ×2 =2x-12x+36 ......6 ③ ⑥ より APを1辺とする正方形の面積と PB を 1辺とする正方形の面積の和は, PCを1 辺とする正方形の面積とCBを1辺とする正方形 の面積の和の2倍に等しくなる。 6 17, 28, 39 よって、3個の数字の選び方は、 3×5=15 (通り) 5 1(1)-36a²+4ab (3) x²+9x+20 式の展開 (2) 3y-4 (5) 9x²-6xy+y (4) 4cc²+xy+g (6) a-9 (3)~(6)は, 乗法公式を利用して展開する。 (1) (9a-b)x(-4a) =9ax(-4a)-bx(-4a)=-36a²+4ab (2) (-6xy+8xy)+(-2xy) =- _68 -2xy -2xy 3 1 1 =+- 4 1 1 xxxxxxx=3g-4 XXX XXX =x+9x+20 (3)(x+5)(x+4)=x²+(5+4)x+5×4 解説の十の位の数を x, 一の位の数を ただし, xは1から9までの整数 までの整数とする。 とする。 (4) (2x+y^2=(2x)'+2xy×2x+y は0から9 =4x²+4xy+gf (5) (3x-g)=(3)²-2xy×3x+y =9x²-6xy+y (6) (a+3) (a-3)=α-3=d-9 (2) x²-x+1 2 (1) x²-12y (3) -8x+9 (4) 6a+25 P24 25 b= m=10x+y, n=x+y と表せるから, 11n-2m=11(x+y)-2(10x+y) =11x+11y-20x-2y=-9x+9y=9(-x+y) よって, 11n-2mは9の倍数である。 また, 50 11n-2m60 だから, 11n-2m=54 よって, 9-x+y)=54,-x+y=6 この式を満たすxyの値の組は, (x, y)=(1, 7), (2, 8), (3, 9) したがって, m=17, 28, 39 7 I 99(a-c) II 15 解説 A=100α+10b+c, B=100c+10b+αと表せるか ら. A-B=(100a+10b+c)-(100c+10b+a) =100a+10b+c-100c-10b-a=99a-99c =99(a-c) A-B=396 より, 99 (a-c) =396, a-c=4 acは1から9までの整数だから, a-c=4を満 たすα.cの値の組は, (5) -x+1 (7) 2a+10a+15 (9) 10x +32 (6) 11x-44 (8)5x+23 (10) 4 解説 まず, 乗法公式を利用して展開し、同類項をまと める。 (1)(x-3)(x+4y)-xy=x²+acy-12g-xy =x-12g/ (2)(x-2)^+3(x-1)=x-4x+4+3x-3 =x-x+1 (3) (2x-3)2-4x(x-1) =4x-12x+9-4x+4x=-8x+9 (4) (a+3)-(a+4)(a-4) =a+6a+9-(a²-16) =α²+6a+9-α+16=6a+25 12x 団イ 34 な 9 7 次の文章中のエ ]にあてはまる式を書きなさい。また,Ⅱ にあてはまる数を書 HIGH LEVEL きなさい。 1から9までの9個の数字から異なる3個の数字を選び, 3けたの整数をつくる とき,つくることができる整数のうち、1番大きい数を A, 1番小さい数をBと する。 例えば、 247 を選んだときは, A=742,B=247 となる。 A-B=396 となる3個の数字の選び方が全部で何通りあるかを次のように考 えた。選んだ3個の数字を, a, b, c (a > b >c)とするとき, A-B を abc を使って表すと、 A-B-396 となる。この式を利用することにより, なる3個の数字の選び方は、全部で Ⅱ 通りであることがわかる。

解決済み 回答数: 1
物理 高校生

この問題の4番について質問です。振動数はおもりの重さによっては変わらないとあるのですが,なぜですか? おもりの数が多いほど,弦が張ることになるので,音が高くなると思ってました。(ギターみたいな感じで)

(3) Hz である。 また, a=35cm をそのままにし, おもりを4倍に増やし たとき, 弦は共振しなくなった。 弦を再び共振させるには,Bを 少なくとも (4) cm 右に移動しなければならない。 64 弦の共振 全体の長さが120cm 質量 1.8g の弦の右端に滑車を通して質量 6 kgのおもりをつるし,振動源Sによって弦を振動させる。 この弦は, コマBを動かすことにより任意の一点を固定できる。 弦の張力はどこ も同じで,振動する AB間の距離をα, 重力加速度を10m/s2とする。 問1 コマBを適当に動かすと, a= 30cmで弦が共振する。 さらにB を右に移動していくと, a=35cm で再び弦が共振する。 したがっ て,弦を伝わる横波の波長は (1) cmであり,このときのAB 間の腹の数は (2) 1個である。 またSの振動数は (1) 振動数 fと波の速さが変わっていないの で、波長も変わっていない。 Aが節で今こ とに節があるから, Aから30cmの範囲の定 常波の様子は同じこと。 そこで,Bを右へ だけ移せば再び共振する。よって .. 1 = 10 cm 5cm ごとに腹が1つずつあるから 35÷5=7個 B =35-30 2 2 2 (2) 2 (3)密度は p = 1.8×10-3 120×10-2 B< [kg] と [m〕 を - = 1.5×10-3 kg/m 用いること v = mg P 6 × 10 V1.5×10-3=200m/s 2 もとの弦と同じ材質 同じ長さで, 直径が2倍の弦に張り替え て, αを30cmにし, おもりの質量を6kgに戻す。 このとき弦は 共振し, AB間の腹の数は (5) 個となる。 また, AB間の腹の 数を3個とするには, Sの振動数を (6) 200 v=fa より - f === 10 × 10-2 = 2000Hz (4) はじめはVP Img =fx.......① Hz とすればよい。 mを4倍にしたときの波長を とすると,fは< ①を見て,m を4 倍にすると A B 変わっていないから V p 4mg =fv.......② 2倍になると即断 したい。 S 中にス ② より 2= =24=21=20cm ① 1 (上智大) ・B' Level (1)~(4)★ (5),(6)★ Point & Hint 隔は (1) (2) 弦が共振するのは, 両端が節となる定常波ができるとき。 節と節の間 2 だから、弦の長さが1の整数倍に等しいとき,共振が起こる。 弦の長さが4=10cmの整数倍のとき共振するから、35cmより大き い次の値としては 40cm。よって,5cm 動かせばよい。 A 2 (5)直径を2倍にすると, 断面積が4倍になる から、密度も4倍になる。 波長を入とす ①からを4倍にす ③れば入は1/2倍と即 mg=fie ......③ 断できる。 ると V 40 この問題のような状況では,Sはおもりの重力 mg に より1=4 ∴ A2 = =5cm 2 12= cm ごとにあるから 30÷2=12個 は v [m/s] はv= (3) 弦の張力をS〔N〕, 線密度をp 〔kg/m〕 とすると, 弦を伝わる横波の速さ 等しい。

解決済み 回答数: 1
1/40