学年

質問の種類

看護 大学生・専門学校生・社会人

この問いについてご回答よろしくお願いします

- 9)抗菌薬・耐性菌について正しいものは 自然界の細菌では、そもそも抗菌薬に対して自然耐性を持っている細菌も存在する 耐性菌が発生する背景として、臨床で大量の抗菌薬が使用されてきたことに誘因がある βラクタム系の抗菌薬は、 選択毒性が高い メチシリン耐性黄色ブドウ球菌は、メチシリンを分解する酵素を多く産生するので、耐性度が強い 1つの耐性菌には、耐性の仕組みとして、 1種類の耐性機構しか持たない ・細菌が抗菌薬の作用を逃れる仕組みは、薬剤の作用を受け付けないように細菌側が変身することである 薬剤感受性測定の結果は、あくまで試験管内での結果であり、生体内での効果を反映するとは限らない 菌交代症は、起因菌に対し有効な抗菌薬が適切に用いられなかった結果として起こるも 10)薬剤感受性に基づき抗菌薬を投与したが効果が得られなかった。どのように考えればいいだろうか 薬剤感受性の検査が間違っていた(検体を取り違えたとか) そもそも細菌感染症ではなかった (ウイルス感染症であったり、感染症以外の疾患であった) 抗菌薬の投与量が十分ではなく、血中濃度が低かった 感染巣(感染部位)に膿瘍などがあったり、カテーテルなどのデバイスが挿入されていた 感染部位への移行性が悪い抗菌薬を用いてしまった 抗菌薬の賞味期限が過ぎていた 患者がズルして薬を服用せず、 メルカリで売って入院費の足しにしていた 抗菌薬の効果を妨げるような要因 (患者の栄養状態や腎機能など)のチェックを見落としていた 11) 呼吸器感染症について正しいものは - 肺炎球菌は、市中感染でもっとも重要な起因菌である ( ① - 尿中抗原の検査で起因菌が推測される微生物として、 肺炎球菌やマイコプラズマがある 肺結核症では、下肺野の横隔膜に近い部位に感染巣が見られやすい 誤嚥性肺炎の起因菌として、嫌気性菌に注意する必要がある - 加湿器や空調が関連する感染症として、 レジオネラ菌による肺炎がある - 空気の読めない人間は、呼吸器感染症にはかからない NEXT 2 MACによる感染症では、 中年の女性に多く、 ヒトヒト感染の無いのがせめてもの幸いである オセルタミビル(タミフル) は、インフルエンザ発症後、解熱など症状が落ち着いてから投与する 12) 麻疹と風疹について正しいのは X-両者とも空気感染する いずれも顔面から躯幹、 四肢に拡がる有痛性の水疱が発疹の特徴である 麻疹では、 細胞性免疫が抑制され、一過性にツベルクリン反応が陰転化する - 麻疹において、 Koplik斑は発疹の出現した後にみられる - 麻疹風疹との混合ワクチン (MRワクチン) が有効である 風疹での顕性発症率は50%程度であるのに対し、 麻疹では95%以上と高い 風疹は潜伏感染することがあり、そのため発疹の色素沈着を残さない 垂直感染を防止するため、妊婦に対し風疹のワクチン接種が推奨されている 3/6 AC (

回答募集中 回答数: 0
理科 中学生

この(2)の答えがオになるのが理解できません。 解説を見てF'P1':P1'Q1'=8:5というのは理解できるのですが、それがどう答えに繋がるのかが分かりません。 どなたか教えて下さい。🙇

難関入試対策 思考力問題 Qo Solution ●次の文章を読み、あとの問いに答えなさい。 とつ 右の図は、凸レンズの左側に物 体を置いたとき, 凸レンズの右側 に実像ができたようすを表してい 物体 る。このとき, 凸レンズの中心と 物体でつくる △OPQ と, 凸レ ンズの中心と像でつくる △OP1 Q1 そうじ との間には相似の関係があること がわかる。 きょり いま,大きさが10cmの物体 PoQo を凸レンズとの距離が80cmのところに置 くと、実像 P Q は凸レンズから20cmのところにできた。このとき, 実像 P,Q1 の大きさは(①)cmであった。この状態から凸レンズを(②)cmだけ左へ 動かすと,実像 P,Q, と同じ位置に実像 Pi'Q1' ができた。このとき実像 P,'Q'' の 大きさは(③)cmであった。 Po 焦点F イ ②30, ③10 オ②60,③40 第1章 ウ ②40,③15 カ ②70,③90 O AD.O. が相似であることから, OP:OPP R1 くうらん (1) 空欄 ① に入る数値を答えなさい。 (2) 空欄②③に入る数値の組み合わせとして正しいものを、 次の中から選び記号で 答えなさい。 ア ②20, ③6.7 エ②50,③23.3 KOP Level 3 R2 【大阪桐蔭高 - 改】 Key Point △ABCと△DEF において対応する2組の角がそれぞれ等しいとき, △ABCと△ DEFは相似 (同じ形) であるという。 対応する辺の長さの比は等しくなり, AB:DE= BC: EF=AC: DF がなりたつ。 焦点F'P1 光軸 実像

回答募集中 回答数: 0
数学 高校生

赤線の部分どうしてこうなるのかわからないです それと、どうしてsとかtとかおくと解けるのか、何処をみてそういう思考になるのかわからないです

12 N/L 400 基本例 26 交点の位置ベクトル (1) 辺OB を 3:4に内分する点をD, 線分 AD と BCとの交点をPとし, 直線OP| △OAB において, OA=4,OB=とする。 辺OA を 3:2に内分する点をC. と辺ABとの交点をQとする。 次のベクトルをà, を用いて表せ。 (1) OP (2) OQ 指針 (1)線分 AD と線分BC の交点P は AD上にも BC 上にもあると考える。そこで、 AP:PD=s: (1-s), BP:PC=t: (1-1)として, OPを2つのベクトルを 用いて2通りに表すと, p.362 基本事項 5 から 解答 a=06=0, axo (とちが1次独立) のとき pa+qb=p'a+q'b⇒p=p', q=q' (2) 直線 OP と線分 AB の交点 Q は OP 上にも AB 上にもあると考える。 CHART 交点の位置ベクトル 2通りに表し 係数比較 (1) AP:PD=s : (1-s), BP:PC=t: (1-t) とすると OP=(1-s)OA+sOD=(1-s)a+1/27sb, OP=tOČ+(1¬t)OB=³ tã+(1−t)b (1-s)a+ st=1/23ta+(1-t) a = 0, 石ゃxもであるから、1-s=1/31, 4s=1-t 3 よって これを解いて S= したがって (2) AQ: QB=u: (1-u) とすると OQ=(1-u)a+uo また, 点Qは直線 OP 上にあるから OQ=kOP (k は実数) とすると, (1) の結果から 7 13 3 6 OQ=k(vá+³³3b) = 13ká + 1² kb 6 13 これを解いて 10 13 t= 13 よって (1-m) a+w6=1/3+1/3 k= kb a = 0, 0, ax であるから 1-u= 6 13 13 9 U= 1 3 -k, u= 3 13 A ・k [類 早稲田大] 基本 2837,66 4 OP = P の断りは重要。 3 a+1/26 6 13 13 0 の断りは重要。 したがって 00=2434+1/26 0Q=²a b ② 26 AM の交点をPとし, 直線 OP と辺 AB の交点を N とする。 OP, ON をそれぞれ 練習 △OAB において, 辺OA を 2:1に内分する点をL, 辺OBの中点をM, BLと OA と OB を用いて表せ。 [類神戸大] p.414 EX18 IC ズーム UP 10

回答募集中 回答数: 0
数学 高校生

青線は気にしないで欲しいんですけどその右の赤色の式からどうしてs=とt=の答えが出るのかどう計算しても答えてなかったので求め方教えてください😭😭😭💦

基本例題 24 交点の位置ベクトル (1) △OAB において, OA-a, OB 辺OB を 3:4に内分する点をD,線分 AD と BCとの交点をPとし直線 OP と辺ABとの交点をQとする。 次のベクトルをa, ” を用いて表せ。 (1) OP (2) OQ [類 早稲田大〕 指針 (1) 線分 AD と線分BCの交点PはAD上にもBC上にもあると考える。そこで、 AP: PDs : (1-s) BP: PC=t: (1-t) として, OP を2つのベクトル トル コー a. 6 を用いて2通りに表すと, p.384 基本事項 5 から ad. 61.ax (とらが1次独立) のとき pa+qb=p'a+q'bp=p. q-q' (2) 直線 OP と線分ABの交点Qは OP 上にも AB 上にもあると考える。 0000 辺OAを3:2に内分する点をC, とする。 【CHART 交点の位置ベクトル 2通りに表し 係数比較 解答 (1) AP: PD=s: (1-s), BP: PC=t: (1-1) とすると OP=(1-s)OA+sOD=(1-s)a+1/256, よって OP-HOC+(1-t) OB=2/312+(1-1) 6 (1−s)ã+/-sb=³ tà+(1−1)6 0.0.x であるから 1-8-23/34,428-1-1 10 13 よって ********* t= 3 これを解いて s= したがって (2) AQ: QB=u: (1-u) とすると OQ=(1-u)a+ub また、点Qは直線OP 上にあるから, OQkOP (k は実数) とすると, (1) の結果から 13 0Q-k(a+b)-ka+kb 6 (1-u)a+ub-ka+kb = OP= 重要 27. 基本 36.63」 a A 1-t 3 a=0.6=0, a であるから 1-u= u-ik, u-13k これを解いて k-102.u-1/23 したがって DQ-012/241+1/1/27 の断りは重要。 ← 3 a+ -6 13 13 B りは重要 B

回答募集中 回答数: 0
数学 高校生

105.2 記述に問題ないですか?

て求めよ。 後の数の差が せよ。 24148 基本事項 ② される。 下3桁が8の とみなす) Da+b を示す。 ■ +36 6 00m 122 切ると 122 である になる。 tcが 基本例題105 素因数分解に関する問題 63n 40 7 (1) (1) (2) 解答 (1) √Am (m は偶数)の形になれば, 根号をはずすことができるから, 指針 いずれの問題も素因数分解が,問題解決のカギを握る。 √の中の数を素因数分解しておくと、考えやすくなる。 n (2) 14/05 = (mは自然数) とおいて, ,2 n³ 196 " 441 を考える。 JUSCONOTON 練習 ② 105 n² n , 6 196, 63n (1) (3) が有理数となるような最小の自然数nを求めよ。 BSC1638 COMERC V 40 これが有理数となるような最小の自然数nはn=2・5・7=70 n (2) = (m は自然数) とおくと 6 ゆえに 3 n 441 N 53 441 3².7n 2³.5 7 3a+2a+? EKOPACOTCO これが自然数となるのは, が7の倍数のときであるから, m=7k(kは自然数) とおくと n=2.3.7k ① よって用 23.33.73k³ 3².7² -= 2³.3.7k³ ONDOR 3220520 これが自然数となるもので最小のものは, k=1のときである から, ① に k=1 を代入して n=42 n 10 n=2.3m n² 22.32m² 32m² \2 196 (3m)² ² = 2272 500 77n = 1 【検討 素因数分解の一意性 素因数分解については,次の 素因数分解の一意性も重要である。 がすべて自然数となるような最小の自然数nを求めよ。 p.468 基本事項 ③ 3 7n 2 V 2.5 18 nº が自然数となる条件 が有理数となるような最小の自然数nを求めよ。 √54000nが自然数になるような最小の自然数nを求めよ。 3 2 n° 45 00000 000 UT 合成数の素因数分解は,積の順序の違いを除けばただ1通りである。 したがって、整数の問題では、2通りに素因数分解できれば,指数部分の比較によって方程式を 解き進めることができる。 問題 3"15"=405 を満たす整数m,nの値を求めよ。 解答 3.15=3(3・5)"=3"+".5", 405=34・5 であるから 3m +1.5"=34.5 よって m=3, n=1 指数部分を比較してm+n=4,n=1 |素因数分解 3) 63 3) 21 7 63=3².7 63=327,40=23.5 3 7 2 V 2-5 ・×2・5・7 =12/23.7=12/12 (有理数) となる。 HO より, kが最小のとき, nも最小となる。 1645500 03-31801- がすべて自然数となるような最小の自然数n を求めよ。 (p.484 EX74.75

回答募集中 回答数: 0
数学 高校生

写真の赤線のところなのですがなぜこのように必ず書かなければならないのか教えてください。

378 基 本 例題 29 交点の位置ベクトル (1) * 800000 する点をDとする。 線分 AD と線分BCの交点をPとし, 直線 OP と辺AB △OAB において, 辺OAを1:2に内分する点を C, 辺OBを2:1に内分 の交点をQとする。 OA= a, OB=1 とするとき,次のベクトルをa,bを 用いて表せ。 (1) OP (2) OQ CHARTO SOLUTION |p.337 基本事項 3, p.370 基本事項 1 交点の位置ベクトル 2通りに表し 係数比較 (1) AP:PD=s: (1-s), BP: PC=t: (1-t) として,点Pを 線分 AD における内分点, 線分BCにおける内分点 解答 (1) AP:PD=s: (1-s), BP:PC=t: (1-t) とすると OP=(1-s)OA+sOD=(1-s)a+1/23st 1 OP=(1-10B+10C=//ta+(1-1).... ② の2通りにとらえ, OPを2通りに表す。 (2) 点Qは直線 OP 上にあるから, OQ=kOP(kは実数)と表される。 (1) と同 様に,点Qを 線分 AB における内分点,直線 OP 上の点の2通りにとらえ, OQを2通りに表す。 ①,②から (1—s)ã+sb=tã+(1—t)b !à±0, 6±0, axb chp5_1-s=- 6 これを解くと s = 77, t=327 ゆえに OP= 1/27/12/26 一方 7' 7 OQ=k ...... =1-t¼ (2) AQ:QB=u: (1-u) とすると OQ=(1-u)a+ub また,点Qは直線 OP 上にあるから, OQ=kOP (kは実数) とすると,(1) より ON=(1/2+1/6=1/2+1/1 k á b ) ==—7 kā kb *₂ (1-u)a+ub=-=— kā + 1/4 kb よって a=0.6=0. a であるから 1-u=k, u=- k 4 これを解くと k = 1/23,u=1/13 ゆえに OQ= U 5 A 2 基本 36,57 -u B -1- 注意 左の解答の赤破 の断りを必ず明記する。 inf. メネラウスの定 チェバの定理を用いた は, p.380 の 補足 参照 また, ベクトル方程式 いる解法は次節で扱う 本例題 36 の inf. 参照 0Q=a+b PRACTICE・・・・ 29 ② △OAB において, 辺OA を 2:3 に内分する点をC. 辺OF 4:5に内分する点をD

回答募集中 回答数: 0
1/4