学年

質問の種類

数学 高校生

FG例題115 黄色マーカ部はなぜ成り立つのですか?

で、3 軌跡と領域 21. 例題 115 領域と最大・最小(2)) ・大 **** 連立不等式 x≧0, y≧0 4≦xty's 最大値、最小値と,そのときのx,yの値を求めよ。 の表す領域において,x+3y の (大阪電気通信大改) 東方 例題 113 (p.216) と同様に、まず与えられた不等式を満たす領域を求める 次に、x+3y=kとおいて考えるとよい。 答 与えられた条件を満たす領域 D は、 右の図の斜線部分で, 境界線 を含む、 yA 境界線は, x+y= 4, B k-3/10 x+y= 9, x+3y=k とおくと、 2 x軸と軸 1 k 13 0 2/ th 3 1 より、傾き k 3' 切片の直線 である。 この直線が領域 D と共有点をもつとき、上の図のように、 (i) 点Aを通るときは最小 (i) 点Bで接するときは最大 となる. (i) 図より A(2.0) である小 この k=x+3y=2+3.0=2 (i)円x²+y2=9 と直線 x+3y=k が接するときの 中心 (0, 0) 直線の距離は、 切片が最小 y切片が最大 k の最小値 円と直線が接する 円の中心と直線の 距離が半径と等し くなる |kk| d= √12+32 √10 kl これが円の半径3と等しくなるから, =3より, √10 1円と直線の式を連 立させて、判別式 D=0 としてもよい。 中||=3√10 つまり, k=±3/10 S したがって,図より、 k=3√10 JA 図より, k0 んの最大値 このとき点は、直線 y=1/2x =-2x+√10 と原点 直線OBの傾き 3. x+√10=3xより、 x= 3√10 18を通りこの直線に垂直な直線 y=3x との交点だから、 OB=3 より 点B の座標は、 10 MA-3. V10 B 9/10 このとき y= 10 y=3• 3 /10 3√10 よって, x+3y の最大値 3√10x= y= 10 10としてもよい、 10 最小値2 (x=2,y=0) x, y が不等式 x+y's5, y≧2x を同時に満たすとき,次の式のとる値の最 大値、最小値と,そのときのxyの値を求めよ。 (1) y-3 (2) 2y-x →p.23034

解決済み 回答数: 1
物理 高校生

物理力学の質問です。 問2の式の右辺の成り立ちの意味がわからないため教えてください。

(14. センター追試 [物理Ⅰ] 改) ☆☆☆ 思考 判断 表現 13 摩擦のある水平面上の運動 5分 図のように、粗い水平な床 m F の上の点0に、質量mの小物体が静止している。この小物体に、 床と角度をなす矢印の向きに一定の大きさFの力を加えて、点 0から距離にある点Pまで床に沿って移動させた。小物体が点 Pに達した直後に力を加えることをやめたところ、 小物体はだけすべって、 点Qで静止した。ただ し、小物体と床の間の動摩擦係数をμ'′ 重力加速度の大きさをgとする。 問1点0から点Pまで動く間に、 小物体が床から受ける動摩擦力の大きさを表す式として正しいも のを、次の①~⑦のうちから一つ選べ。 ① μ'(mg+Fsin0) ②μmg-F'sin0) ③μ'(mg+Fcose) ④μ'(mg-Fcose) ⑤μ'(mg+F) ⑥μ'(mg-F) ⑦ μ'mg 小物体が点Pに到達したときの速さをfを用いて表す式として正しいものを、次の①~⑥のうち から一つ選べ。 「21(F+f) 21 (Fsin0+f) 21(Fcose+f) ① (2) ③ m m m 21(F-f) 21(Fsine-f) 21(Fcose-f) ④ ⑤ ⑥ m m m 問3 小物体が動き始めてから点Qに到達するまで、 点0と小物体との距離を時間の関数として表した グラフとして最も適当なものを、次の①~④のうちから一つ選べ。 さい a 距離 ① 距離 ② 距離 距離 ④ 1+1'1 1+1'1 1+1'1 1+1' 301 1 I 時間 時間 時間 時間 ( 13. センター本試 [物理Ⅰ] 改)

未解決 回答数: 1
数学 高校生

この問題の別解の解き方なんですが n🟰17のとき2分の1n(n-1)は272になると思うんですけどこれがn-1軍め の最後の番目ということですよね?そしたら273番目がn軍目の1番最初になり そこから302番ー273番をしても15にならないと思うんですがどこの考え方が間違っ... 続きを読む

奇こ (2) 差 (3) 452 基本 例 29 群数列の基本 n個の数を含むように分けるとき (1) 第n群の最初の奇数を求めよ。 (3)301は第何群の何番目に並ぶ数か。 奇数の数列を1/3,5/7, 9, 11/13, 15, 17, 19|21, このように、第 00000 (2)第n群の総和を求めよ。 [類 昭和大 p.439 基本事項 もとの数列 群数列では、次のように目 指針 数列を ある規則によっていくつかの 組 (群) に分けて考えるとき,これを群 数列という。 区切り れる [規則 る 区切りをとると もとの数列の 目すること群の最初の数が 群数列 がみえてくる 数列でいくと 目が ① もと ↓ ② 第 数列の式に代 見則 の個数は次のようになる。 上の例題は 群第1第2 第3群・・・・・・・・ 1 | 3,57,9,11| 第 (n-1) 群 第n群 初項 (n-1) 18 n個 公差2の 個数 1個 2個 3個 等差数列 11n(n-1)個 11n(n-1)+1番目の奇数 (1) 第k群の個数に注目する。 第k群にk 個の数を含むから,第 (n-1) 群の末頃ま でに{1+2+3++(n-1)} 個の奇数が 第1群 (1) 1個 3 77 ある。 よって、第n群の最初の項は, 奇数の数列 1, 3, 5, の 第2群 第3群 第4群 13, 15, 17, 19 第5群 21, 59 2個 9, 11 3個 4個 {1+2+3+......+(n-1)+1)番目の項で ある。 {(1+2+3+4)+1} 番目 検討 右のように、初めのいくつかの群で実験をしてみるのも有効である。 (2)第n群を1つの数列として考えると、求める総和は, 初項が (1) で求めた奇数 差が 2 項数nの等差数列の和となる。 (3) 第n群の最初の項をan とし,まず an≦301<ant となるnを見つける。 nに具 体的な数を代入して目安をつけるとよい。 CHART 群数列 数列の規則性を見つけ、区切りを入れる ② 第群の初項・ 項数に注目 (1) n≧2 のとき,第1群から第 (n-1) 群までにある奇数 第 (n-1) 群を考えるか 解答 の個数は 1+2+3+(n-1)=1/12 (n-1)n ら,n≧2という条件が つく。 よって,第n群の最初の奇数は (n-1)n+1番目の+1」 を忘れるな!!

解決済み 回答数: 1
1/41