学年

質問の種類

英語 高校生

checkの問題が分かりません。 どなたかお力添え頂けると助かります。 よろしくお願いします。

TA マイ: Mik あな TOPIC ドローンなどの先進技 術による、 将来の展望 ☐ recent [ri:sant リースント] ☐ condition [kandijan コンディション] □ farmland [formlaend ファームランド] ☐ product [prádakt プラダクト] □ spray [spréi スプレイ] ☐ pesticide [péstosaid ベスティサイド ] ☐ efficiently [ififantli イフィシェントリ ] | ☐ operate [áparèit アパレイト] Acial [soujal ソウシャル] □ sustainable [sasteinabl サステイナブル] 6 生育状況を調べるドローン 農薬散布用のドローン <p.57 In recent years, some farmers have been using drones for agriculture. These drones can collect information about the condition of farmland and products. They also spray pesticides efficiently. Drones are cheaper than helicopters and are easy for farmers to operate. Advanced technologies can be used not only for agricultural problems but also for other social challenges. With such developments, | life will become much more sustainable. 1. in recent years 「近年、ここ数年」 9. social challenges 「社会的課題」 7. not only but also... 「~だけでなく・・・も」 Mike あなた Mike CO A B barr [バーン] hose [ホウズ] 例を参考 I grew and I READING 【必要な情報を見つける (スキャニング)】 seventy-two SKILL 必要な情報だけをすばやく探す読み方をスキャニングと言います。 スキャニングでは、 特定のキーワードを探す ことが重要です。 「ドローンができることは何か」という問いには、 drone と canが含まれた文を探します。(p.76) fertiliz

解決済み 回答数: 1
数学 高校生

xについての二次方程式までは式を整理できたのですが、その後に「この二次方程式が実数解を持つための条件は〜」の発想にいくのが、次にこの問題を解くときに思い浮かべられる自信がありません。どういった考え方をしたら次解くときに実数解を持つ条件を思い浮かべられるようになりますか。 そ... 続きを読む

重要 例題 1222 変数関数の最大・最小 (4) 203 00000 実数x,yが x2+y2=2 を満たすとき,2x+yのとりうる値の最大値と最小値を | 求めよ。 また, そのときのx,yの値を求めよ。 [類 南山大 ] 基本 101 条件式は文字を減らす方針でいきたいが、条件式x2+y2=2から文 字を減らしても, 2x+yはx,yについての1次式であるからうま くいかない。 そこで, 2x+y=t とおき,tのとりうる値の範囲を調べることで, 最大値と最小値を求める。 -> 2x+y=t を y=t-2x と変形し, x2+y2=2に代入してyを消 去するとx2+(t-2x)=2となり,xの2次方程式になる。 xは実数であるから,この方程式が実数解をもつ条件を利用する。 実数解をもつ⇔D≧0 の利用。 見方をかつ える 3 3章 13 1 2次不等式 CHART 最大・最小=t とおいて、 実数解をもつ条件利用 2x+y=t とおくと y=t-2x ...... (1) 解答 これを x2+y2=2に代入すると x2+(t-2x)2=2 整理すると COPIQE このxについての2次方程式② が実数解をもつための 条件は、②の判別式をDとすると D≧0 5x2 -4tx+t2-2=0 (2) ここで 4 D=(-2t)2-5(t2-2)=-(t2-10) D≧0 から t2-10≤0 >> 参考 実数a, b, x, y に ついて,次の不等式が成り 立つ(コーシー・シュワル ツの不等式)。 (ax+by)²≤(a²+b²)(x²+y²) [等号成立は ay=bx] この不等式に a=2,b=1 を代入することで解くこと もできる。 028- これを解いて -√10 ≤t≤√10 t=±√10 のとき, D=0 で, ② は重解 x=-- -4t 2t = 2.5 5 を もつ。 =±√10 のとき x=± 2/10 5 のとき, ② は t=±√10 5x2+4√10x+8=0 よって (√5x=2√2) 20 またはBA ①から y=± √10 (複号同順) ゆえに 5 2√2 2/10 x=± 210 よって V 10 -=± √5 5 x= y= のとき最大値10 5 5 ①からy= 10 5 2/10 √10 x=- y=- のとき最小値√10 (複号同順) また 5 5 としてもよい。

解決済み 回答数: 1
物理 高校生

この質問に答えて。問題はコメントにある。

4 (1)Ua= Cr(p-pal) Vo + Cop(V-Va) R (5) 圧力: 温度: -p (V-Va) U₁ = Capo (V - V₁) + Cv (p-po) V [考え方 R - po (V - Vo) から熱が 変化と (2) 考え方参照 考え方 (1) 気体の内部エネルギーの増加は、外 から与えられた熱量と仕事の和に等しい。 圧力po. 体積Voのときの温度をTとし,p, Vのときの温度をTとする。 また,過程Aで, P.Voのときの温度をT,過程で、po. Vのときの温度をT』 とすれば、次の4つの 状態方程式が成り立つ。 PoVo=RTo PV=RT pV = RT poV = RTs)..... 過程Aでの内部エネルギー増加U』は、 Us=Cr(Ta-To) + C, (T-TA) -p(V - Vo) PV の関係が y= である。 はじめの の圧力〔 1x ゆえに、 ① P = ここで, logio ~ ② ②式に①式から得られる To TA, T を代入 すると, Cr(p-po) Vo +Cpp(V-Vo) U₁ = R さらに, -0.0 -p (V - Vo) 過程Bでの内部エネルギーの増加 UB は, UB = C, (Ts-To-po (V-Vo) + Cv (T - TB) なので、 log10 対数法則 [10] ③れば せ ③式に①式から得られる To T, T を代入の?p= すると, UB = Cppo (V-Vo) + Cr(p-po)V R -po(V-Vo) (2)過程A, B のどちらでも,最初と最後の状 態は同じなので, UA = UB となる。 よって、 ② ③式を代入すると, Cp(p-po) (V-Vo)-Cr(p-po)(V-Vo) となり, R =(p-po) (V-Vo) Cp-Cv=R 240 定期テスト予想問題の解答 すなわち 次に ヤルルの 1 > 273 ゆえに、 (補足) を求める y=1 と表す。 対数関数 k loga

解決済み 回答数: 2
1/56