学年

質問の種類

数学 高校生

ウの意味がわかりません なにを言ってるんですか?

382 重要 例題 31 同じものを含む円順列 00000 白玉4個、黒玉が3個, 赤玉が1個あるとする。 これらを1列に並べる方法に 通り円形に並べる方法は通りある。更に、これらの玉にひもを通 し, 輪を作る方法は 通りある。 指針(円形に並べるときは,1つのものを固定の考え方が有効。 【近畿大 基本 18. ここでは、1個しかない赤玉を固定すると、 残りは同じものを含む順列の問題になる (ウ) 「輪を作る」 とあるから, 直ちに じゅず順列=円順列+2と計算してしまうと、こ 本事項 重複組合せ 異なる 解説 組合せ C 同じものを 重複を許し ようになる あるが、ここでは,同じものを含むからうまくいかない。 そこで,次の2パターンに分 の問題ではミスになる。 すべて異なるものなら「じゅず順列 円順列÷2」で解決す ける。 [A] 左右対称形の円順列は、裏返 すと自分自身になるから、 1個と 数える。 [B] 左右非対称形の円順列は、裏 返すと同じになるものが2通りず つあるから÷2 [A] [B] 裏返すと同じ (円順列全体) (対称形) よって (対称形) + 2 8! (ア) =280(通り) 4!3! 解答 同じものを含む順列 柿 の果物を 物があっ (考え方と の中から れぞれ 考える。 買物か りの左 りんご (イ)赤玉を固定して考えると, 白玉4個、黒玉3個の順列 1つのものを固定する の総数に等しいから 7! 4!3! -=35(通り) 47C4=7C3 (ウ)(イ)の35通りのうち, 裏返して自分自身と一致するも左右対称形の円環 のは、次の [1]~[3]の3通り。 [1] [2] [3] C 図のように、赤玉を一 上に固定して考えると よい。 また、左右対称形のとき 赤玉と向かい合う位置に あるものは黒玉であるこ ともポイント。 この の果 これ ■ 重 2 残りの32通りの円順列1つ1つに対して、裏返すと一 致するものが他に必ず1つずつあるから,輪を作る方法 35-3 は全部で 3+ 残りの32通りはお は、 対称形の円順列。 等 =3+16=19 (通り) (全体) ( か (対称形)+ で (非対称 = (対称形) + そ 2 練習 同じ大きさの赤玉が2個, 青玉が2個, 白玉が2個、黒玉が1個ある。これらの ④ 31 に糸を通して輪を作る。 (1) 輪は何通りあるか。 (2)赤玉が隣り合う輪は何通りあるか。 2

回答募集中 回答数: 0
数学 高校生

数B黄チャートの例題9(2)の問題で、画像の赤線をひいているところがなぜイコールになるのかわかりません。解説よろしくお願いします🙇‍♀️

366 基本 例題 9 等比数列の一般項 000 次の等比数列の一般項 α を求めよ。 ただし, (3) の数列の公比は実数とする。 (1)-3, 6, -12, (3) 第2項が6, 第5項が162 CHART & SOLUTION 等比数列 まず初項αと公比r 1 (2) 公比 第5項が4 p.365 基本事項 初項α 公比の等比数列{an} の一般項は αn = arn-1 (3)初項をα, 公比をrとして, 与えられた2つの条件からα, rの連立方程式を導く。 fire Ant の口に 6 (1) 初項が-3, 公比が すなわち-2である。 ゆえに,一般項は an=-3(-2)"-1 -3(-2)^1=(-6)^-1 (2)この数列の初項をα とすると, 第5項が4であるからとしないように注意! α(21)=1 =4 ゆえに a=64 よって,一般項は an=640 =64(2) n-1 26 == 平2-1=27-n (3)この数列の初項をα, 公比をrとすると ...... 「21 から 64=26であるから、 64 1 (2) \n-1 ①, ar*=162 ....... ②形できる。 ar.x3=162 6・3=162味の半分で者 P-27_11_2 ar=-6 ②から これに①を代入して ゆえに rは実数であるから r=-3 ①に代入して よって a=2 ゆえに,一般項は an=2(-3)n-1 α・(-3)=-6 の は 2 の形に変 infr"=p" については,次のことが成り立つ。 その nが奇数のとき r=ppは実数)⇔r=p r3=-27 から +3=0 ゆえに (r+3)(r2-3r+9)=0 よってr=-3, nが偶数のとき r”=p" (p≧0) ⇔r=±p r2-3r+9=0.... A ここでAを満たす実数 rは存在しない。

未解決 回答数: 1
1/1000