学年

質問の種類

化学 高校生

(6)の問題がわかりません。答えの求め方を教えてもらえると嬉しいです。

18 第1編物質の構成と化学結合 基本例題 4 原子とイオンの構造 18 解説動画 (1) 塩素原子 C1 について, 35, 17 はそれぞれ何を表しているか。 (2)塩素原子 CIについて、陽子, 中性子, 電子の数を答えよ。 ノード (3)(1)と(2)の塩素原子の関係を何というか。また,陽子,中性子,電子のうち,(1)と (2)の塩素原子において数が異なるものはどれか。 (4) (1)の原子の電子配置を、例のように記せ。例 窒素原子 K(2)L(5) (5) (2)の原子はどのようなイオンになるか。 化学式で記せ。 (6) カリウム原子Kがイオンになったとき, (5) のイオンと同じ数になっているの は,陽子,中性子, 電子のどれか。 すべてあげ, その数とともに答えよ。 指針 (1)~(3) 陽子の数で元素が決まる。 陽子の数を原 原子番号= 陽子の数=電子の数 子番号といい, 元素記号の左下に記す。 陽子と 質量数=陽子の数+中性子の数 中性子の数の和を質量数といい, 元素記号の左上に記す。 (4)~(6) 電子はふつう, 内側の電子殻から順に配置されていく。 収容できる電子の最 大数は,K殻2個, L殻8個, M殻18個・・・である。 価電子の数が少ないとそれを 失って陽イオンに, 価電子の数が多いと電子を受け取って陰イオンになる。 解答 (1) 35: 質量数, 17: 原子番号 (2) 陽子: 17, 中性子: (37-17) 20, 電子: 17 (3)同位体,中性子 (4) K(2)L(8)M(7) (5) C1 (6) 中性子: 20, 電子:18 第1編

未解決 回答数: 1
化学 高校生

この文章のfとgの部分が分かりません。詳しく教えてもらえると嬉しいです。

次の文を読んで問いに答えよ。 原子核を構成する陽子の数をその元素の原子番号)といい, 陽子と中性子の数 の和を(質量数)という。 天然に安定に存在する炭素には、(イ)が12のC] と(イ)が13 [123C]の2種類がある。 このように(ア)が等しく, (イ)の異な る原子を,互いに同位体)であるという。(ウ)の化学的性質はほぼ等し い。 天然に安定に存在する水素には]HとHの2種類, 酸素には(イ)が16 17 18 の [10] 101[180]の3種類の(ウ)が知られている。このような複数の ( c[ ウ)の組み合わせを考慮すると,水は ( 9 )種類の水分子の混合物と考えられる。 炭素の(ウ)のうち, [ 'C] は放射線 (3線)を出して [17] へと変化する 14 14 力(放射性同位体あり,天然には極微量しか存在しない。[f]は宇宙線による原子 核反応により地球の上層大気中でたえず生成しているので,その存在比は、時代や地域 にかかわらず,大気中ではほぼ一定である。 生物体中の [f]の存在比は,生きている 間は大気中のそれと同じであるが, 生物が死滅すると外界からの供給が断たれるので, 時間の経過とともに指数関数的に減少していく。 したがって, [f] の存在比から生物の 生存していた年代が推定できる。

未解決 回答数: 1
数学 高校生

波線が引いてある部分についてです。最後の×3は何を表していますか?

基本(例題9 (全体)(・・・でない)の考えの利用 10000 |大,中, 小3個のさいころを投げるとき, 目の積が4の倍数になる場合は何通り あるか。 [東京女子大] 本 指針 「目の積が4の倍数」を考える正攻法でいくと,意外と面倒。 そこで、 (目の積が4の倍数)=(全体)-(目の積が4の倍数でない) として考えると早い。 ここで, 目の積が4の倍数にならないのは,次の場合である。 [1] 目の積が奇数→3つの目がすべて奇数0 →偶数の目は2または6の1つだけで、 2つは奇数100 差50てい 指 早道も考える CHART 場合の数 (Aである)=(全体)(Aでない)の技活用 わざ 解答 目の出る場合の数の総数は 6×6×6=216(通り) 解答 目の積が4の倍数にならない場合には,次の場合がある。よい。) [1] 目の積が奇数の場合 (I+1)×(1 と書いても 積の法則(6" 奇数どうしの積は奇 3つの目がすべて奇数のときで 3×3×3=27 (通り) 1つでも偶数があれば [2] 目の積が偶数で, 4の倍数でない場合 積は偶数になる。 3つのうち, 2つの目が奇数で、残りの1つは2または64が入るとダメ。 の目であるから1(32×2)×3=54 ( [1], [2] から, 目の積が4の倍数にならない場合の数は 27+54=81 (通り) よって,目の積が4の倍数になる場合は (の) 216-81=135 (通り) 掛け(全体)・・・でない) HOON (

解決済み 回答数: 1
1/1000