学年

質問の種類

数学 高校生

a=2とはわかったのですが、その後に正弦定理でBを求めたら、sinB=√3/2となり、B=60゜,120゜と出たのですが、答えでは答えは120゜の方だけです 条件(B<180−45)には当てはまっていると思うのですが、何がいけないのですか?

220 三角形の解法 (1) (1) 2辺とその間の角 (2) 3辺が条件の場合 基本 145 基本例題 146 0000 指針 △ABCにおいて,次のものを求めよ。 b=√6,c=√3-1, A=45° のとき a, B, C a=1+√3, b=2,c=√6 のとき A, B, C (1)条件は,2辺とその間の角→まず余弦定理でαを求める。 三角形の 基本 AAB 指針> (2)類注側) 次に Cから求めようとするとうまくいかない。 よって、他の角Bから求める。 (2)条件は,3辺→ 余弦定理の利用。 B, C から求めるとよい。 CHART 三角形の解法 解答 12角と1辺(外接円の半径) が条件なら 正弦定理 ②3辺 が条件なら 余弦定理 の間の角 (1)²=(√6)+(√3-1-2・√6(√3-1) cos 45° =6+(4-2√3)-(6-2√3)=4 解答 余弦定 よって [1]c CC ゆえ [2] α > 0 であるから a=2 Cから考えると C cos B= (√3-1)^2-(√6)2 2(√3-1)・2 A 16 45 15° cos C= 22+(√6)-(√3-1 √3-1 120° 21-√3) 1 == == B 4 (√3-1) 2 2 ゆえに B=120° よってC=180°(45°+120°)=15° (2) cos B= (√6)+(1+√3)2-22 2√6(1+√3) √6+√2 4 この値は, 15°75°の三角 比 (p.196 参照) である。 Aから考えると 2.2.6 ゆえ 以上 別解 = cos C= 2(1+√3)・2 √3(1+√3) √6(1+√3) よって B=45° (1+√3)2 +22-(√6)_2(1+√3) 75° 1 √√6 22+(√6)-(1+√3 A= 2 cos A= 2.2.√6 /2 [1] 45° 60° √6-√2 B 1+√3 となる。 C 4 1 ゆえに C=60° 4(1+√3 よって A=180°(45°+60°)=75° この例題のように三角形の 残りの要素を求めることを 三角形を解くということが ある。 [2 三角形の解法 検討 列題では,三角形のいくつかの要素から残りの要素を求めている。 一般に,三角形の6つの要素 (3辺a,b,c;3角 A,B,C)のうち [1] 1辺と2つの角 どれかが与えられると,その三角形の形と大きさが定まる。 [2] 2辺とその間の角 [3] AABChi 右

未解決 回答数: 1
1/1000