学年

質問の種類

経営経済学 大学生・専門学校生・社会人

経営戦略論の問題です。 授業の内容に頭が追いついていないため、解説付きで教えていただきたいです。

以下の文章の空欄に当てはまるもっとも適切な語句を課題フォームの選択肢の中からひとつ選び なさい. 第1問 プレイヤー A, B は価値 8 の分配方法をめぐって次のような提案返答型交渉を行う. ●まずAは自分の分け前をBに提案し、 次にBはAの提案を承諾するか拒否する. - もしBが承諾するならば、この交渉は合意に達し, 価値8はAの提案に従って分配 される. - もしBが拒否するならば,この交渉は決裂し, A は利得 2, B は利得3を得る. このゲームの部分ゲーム完全均衡において,この交渉は ① を得る. Aは2 Bは利得 3 第2問 以下の点を除いて, 第1問の交渉ゲームと同じである: ●もしBがAの提案を拒否するならば、 2回目の交渉が行われる. ●2回目の交渉では価値は8から7に減っている. まずBは自分の分け前をAに提案し,次 にAはBの提案を承諾するか拒否する. - もしAが承諾するならば、この交渉は合意に達し,価値7はBの提案に従って分配 される. もしAが拒否するならば、この交渉は決裂し, A は利得 2, B は利得3を得る. このゲームの部分ゲーム完全均衡において, AとBは次の利得を得る: ●もし2回目の交渉が行われるとしたら、この交渉は ④ Aは利得 5 B は利得 ⑥を得る. ●1回目の交渉は Aは利得 Bは利得 ⑨を得る. 1

回答募集中 回答数: 0
生物 高校生

205の問2、問3解説を読んでも分かりません。

思考 HO 205 半保存的複製DNAの複製に関する次の文章を読み, 以下の各問いに答えよ。 大腸菌を 15N が含まれる塩化アンモニウムを窒素源とする培地で何世代も培養し,大腸 菌の DNA に含まれる窒素を5N に置き換えた。 この菌をふつうの窒素培地に (1) 移し,何回か細胞分裂を行わせた。 'N を含む培地に移す前の大腸菌 (2)移してから1 3回目の分裂をした大腸菌, 回目の分裂をした大腸菌 2回目の分裂をした大腸菌, (3) (5). (4)- 4回目の分裂をした大腸菌から,それぞれ DNA を取り出して塩化セシウム溶液に混ぜ 遠心分離した。下図A~Gは,予想される DNAの分離パターンを示したものである。た だし,各層の DNA の量は等しく示されている。 DNA層 P 合 2 (3) 遠心力の方向 *A ABCDI EF GO 問1. 上の図に示された ①~③の各層のDNAには、どの種類のNが含まれるか。次のア 〜ウのなかからそれぞれ選べ。 ア 14Nのみ イ 15Nのみ ウ.14NとNの両方 問2.下線部(1)~(5)の大腸菌から得られるDNA層を示す図はどれか。 A〜Gのなかから それぞれ選べ。ただし, 同じものを何度選んでもよい。 問3.下線部(3)~(5)の大腸菌から得られる DNA層の量の比はどうなるか。 それぞれにつ いて ① ② ③=1:1:1のように, 最も簡単な整数比で答えよ。 ■ 246 6編 遺伝情報の発現と発生

未解決 回答数: 1
公務員試験 大学生・専門学校生・社会人

この問題の解説にある、 AはBの出発15分前に出発し、BはCの出発7分後に出発したことから、AはCの出発8分前に出発したことがわかる。 この文章なんですけど、どういう風に考えたらAはCの出発8分前に出発したことが分かるんですか? どれだけ解説を読んでも、頭がこんがら... 続きを読む

SECTI 第1章 ●ECTION 数的推理 11 0 速さ 実践問題 74 基本レベル 頻出度 地上★★★ 国家一般職★ 国税・財務・労基★ 国家総合職 ★★ 東京都 ★ 特別区★★★ 国家総合職(教養区分)★ 裁判所職員★★ 問 A, B, Cの3人が同じ場所から同じ道を通って同じ目的地へ徒歩で向かった。 Aは, Bの出発15分前に出発し, Cの到着4分後に到着した。Bは、Cの出発 7分後に出発し, Aの到着11分後に到着した。 A, B, Cはそれぞれ一定の速 さで移動し,Bは分速60m,Cは分速70mだったとすると、Aの速さは か。 1: 分速48m 2:分速50m 3: 分速52m 4: 分速54m 5: 分速56m (国家一般職2024) とこは初めてずれった。 それぞれ1回返した後、甲と乙が再び 通ってから63秒であった。 いのはどれか。 図(地上2010) 実践 ◆問題74 の解説 PUT チェック 1回目 2回目3回目 <速さ > AはBの出発15分前に出発し, BはCの出発 7分後に出発したことから,AはC の出発 8分前に出発したことがわかる。また, BはAの到着11分後に到着したこと およびAはCの到着4分後に到着したことから,Aが移動に要した時間をα (分) と すると、中 Bの所要時間: α-15+11=α - 4 ( 分) Cの所要時間: α- 8-4 α-12 (分) 30 第1章 数的推理 ここで,同じ距離を移動する場合, 所要時間の比は速さの逆比に一致することか ら,BとCの所要時間と速さに着目して,次の式を得る。 (a-4): (a-12) = 7:6 としく、さらにこのα=60(分) 次に,Aの速さをx (m/分) として, AとBの所要時間と速さに着目すると、 a: (a-4)=60: x 60:56=60x CHROMA PASOS を満たす。 x=56(m/分) となり,Aの速さは分速56mであることがわかる。 よって, 正解は肢5である。 となりを代入 ()+()=x+x 40x-400 (e/m)= たすため、 よって、正解は 10(分)と 2である。 (コメント) 本間でわれているの 8:1 01:S

未解決 回答数: 2
数学 高校生

⑴(iii)教えてください!!

【4】 中の見えない袋の中に赤玉1個と白玉2個が入っている。このとき,次の試行 T:袋から玉を1個取り出し, 色を確認してから元に戻す をくり返し行う. このとき,次の各問いに答えよ. 結果のみではなく、考え方の筋道も記せ. (1) 試行Tを4回くり返すとき、 次の確率を求めよ. (i) 4回とも同じ色の玉を取り出す確率. () 4回目に取り出すのが2度目の赤玉である確率. () 赤玉を2回以上連続して取り出す確率. (2)袋に黒玉を1個追加して、試行Tをくり返す. 1回の試行で赤玉を取り出すと2点, 白玉を取り出すと1点もらえるが,黒玉を 取り出すとそれまでに獲得した点数が0点になるとする. 試行を何回かくり返し, 獲得した点数の合計をX とする.たとえば,試行を5回くり返し, 白玉,白玉,黒玉,赤玉、白玉 の順に玉を取り出すと, 3回目に黒玉を取り出したのでそれまでの得点は0点とな り4回目の赤玉の2点と5回目の白玉の1点の合計から,X = 3 である. (i) 試行を7回くり返すとき,X = 0 である確率を求めよ. () 試行を7回くり返すとする, X=6である確率を求めよ. また, X = 6 である とき,少なくとも2回は赤玉が取り出されていた条件付き確率を求めよ. () 試行を3回くり返すとき,Xの期待値を求めよ. (50点)

未解決 回答数: 1
数学 高校生

確率の最大値の問題なのですが2つの問題どちらも全くわからないので解説して頂きたいです😭🙏 お願いします🙇‍♀️

11 確率の最大値 きれているのが致した。頑をを取り出すとき、2枚だけが 号で残りの(k-2)枚はすべて異なる番号が書かれている確率をp (k) とする. (1) p(k+1) p(k) (4≦k≦9) を求めよ. つず A ある 福岡教大/一部省略) (2) (k) (4≦k≦10) が最大となるkを求めよ. 確率の最大値は隣どうしを比較 確率 (k) の中で最大の値 (または最大値を与えるk) を求める 問題では、隣どうし[p(k)とか(k+1)] を比較して増加する [p(k) p (k+1)]ようなkの範囲を求 (k) (k+1)の大小を比較すればよいのであるが,p(k)とか(k+1)は似た形をしているの で 力(k+1) p(k) を計算すると約分されて式が簡単になることが多い。 p(k+1) p(k) ≧ 1⇔ p(k) ≤ p (k+1) である. 解答 (1) 30枚からk枚 (4≦k≦10) を取り出す取り出し方は 30Ck通りあり,これ らは同様に確からしい.このうちで題意を満たすものは 同じ番号の2枚につい て番号の選び方が10通りで番号を決めると色の選び方がC2 通り, 異なる番号 の (k-2)枚について番号の選び方がCk-2 通りでそれを1つ決めると色の選び 方が3k-2通りある. 10-3-9Ck-2-3-2 よって, p(k)= 30Ck p(k+1) 9Ck-1-3k-1 p(k) 30Ck 10-3 を約分 30Ck+1 9Ck-2-3-2 (k+1)! (29-k)! 30! 9! (k-2)! (11-k)! -.3 ←順に, 30! k! (30-k)! (k-1)! (10-k)! 9! 3(k+1) (11-k) 1 30Ck+1 最後の3は3-1と3-2 を約分. 1 30Ck, 9Ck-1, 9Ck-2 (k-1) (30-k) (2) p(k) sp(k+1) s )= p(k+1) p(k) ≧1⇔ 3(k+1)(11-k -≧1 p(k)>0, p(k+1)>0 (k-1) (30-k) ① は を D ⇔3(k+1)(11-k) ≧ (k-1)(30-k)⇔k(2k+1)≦63 5.(2·5+1)<63<6·(2・6+1) であるから, ①を満たすにはk=4,5で①の等 kは4~9の整数 号は成立しない。 よって p(4)<p(5)<p(6), p(6)>p(7)>p(8) >p (9)>p(10) となり, p(k) が最大となるんは 6. 11 演習題 (解答はp.52) 当たりくじ2本を含む5本のくじがある. このくじを1本引いて, 当たりかはずれか を確認したのち, もとに戻す試行をT とする. 試行Tを当たりくじが3回出るまで繰り 返すとき, ちょうど回目で終わる確率をp (n) とする. (1) 試行Tを5回繰り返したとき, 当たりが2回である確率を求めよ. (2) n≧3として, p(n) を求めよ. (3) p(n)が最大となるnを求めよ. (芝浦工大) n回目が3回目の当たり なので,それまでに当た りは2回(3)は例題と 同じ手法を使う. 44 る 3

未解決 回答数: 1
1/63