学年

質問の種類

数学 高校生

(3)の0は、(2)では近似値?で13と16を使っているのになぜ(3)では分母は12にしているのですか?

ヒストグラムの選択 データを合わせた平均値や分散 ②のうち、複数の合計が20であるものは②だけであるので、A の 29 難易度 ★★ べて整数) をまとめたものである。 Aテストの得点を変量x, B テストの得点を変量で表し、 てあるクラスの加入の生徒の入テストとBテストの再度 (100点満点であり、 y 100円 90 yの平均値をそれぞれで表す。 ただし、表中の数値はすべて正確な値であり, 四捨五入され、 いないものとする。 80円 70 60 50 40 30 20 [[10] 生徒番号 1 *** X 62 *** y 57 ww 47 55 1220 A 61.0 B 20 合計 平均値 中央値 (1) A=アイウ, B=エオ」 (2) 変量xと変量yの散布図はキ www [x-x (x-x)² y-ỹ (-y)² (x-x)(y-y) 169.0 13.0 13.0 1.0 1.0 -6.0 0 1020304050 60 70 80 90 100 X 0.0 0.0 1.5 62.5 42.0 カ 42.5 である。 60 100 y 90 80 70 150808010 40 *** 36.0 3064.0 153.2 30 目標解答時間 20 に当てはまるものを、次の⑩~②のうちから一つ選べ。 ① 10] 3.0 0.0 0.0 -2.0 ... 9分 9.0 5014.0 250.7 90.5 0 102030405060 70 80 90 100 XC *** -18.0 -3468.0 -173.4 -44.0 y [100 90 80 70 60 50 得点は 40 30 20 10 ② 30 A, B. た。 ただ (1) 各 スト 10 20 30 40 50 60 70 80 90 100 X (3) このデータの特徴に関する説明のうち,正しいものはクである。 クに当てはまるものを、次の⑩~②のうちから一つ選べ。 ただし, 変量xと変量yの散布 キのときとする。 図は ⑩ Bテストの得点の標準偏差はAテストの得点の標準偏差の1.5倍より大きい。 ① Aテストの得点の最頻値は62.5点である。 ② 上の20人の生徒の得点のデータに, Aテストで90点, Bテストで80点をとった生徒1人 の得点のデータを加えたとき, xとyの相関係数は増加する。 (配点10) <公式・解法集 28 30 31 33 34 C 以 (2)

回答募集中 回答数: 0
数学 高校生

〜数学A倍数であることの証明〜 なぜn=2・3の2乗・5の2乗          または2・3の2乗・5の2乗・7 になるのかがわかりません🙇‍♂️

63 αは自然 とき, a +8は15の倍数であることを証明せよ。 解答a+2,+3は,自然数m,nを用いてa+2=3m, a+3=5n と表される。 a+8=(a+2)+6=3m+6=3(m+2) また a+8=(a+3)+5=5n+5=5(n+1) ② よって,①よりα+8は3の倍数であり,②よりa +8は5の倍数でもある。 したがって, a +8は35の最小公倍数 15の倍数である。 終 B □ 255 n は正の整数とする。 次のようなnをすべて求めよ。 *(1) n36の最小公倍数が360 258 256 3つの自然数 45, 63, n の最大公約数が 9, 最小公倍数が 3150 であるとき, n を求めよ。 □ 257 みかんが 435個 りんごが 268個ある。 何人かの子どもに, みかんもりん ごも平等に、できるだけ多く配ったところ, みかんは 45個 りんごは34 個余った。 子どもの人数を求めよ。 (2)と40の最小公倍数が1400 15 20 22'33 のを求めよ。 のいずれに掛けても積が自然数となる分数のうち,最も小さいも 259aは自然数とする。 次のことを証明せよ。 例題63 (1)a+2は7の倍数であり, α+7は9の倍数であるとき, a + 16 は 63 の 倍数である。 * (2) a +3は6の倍数であり, a +1は8の倍数であるとき, a +9 は 24 の 倍数である。 260 次のような自然数の個数を求めよ。 (1) 135 以下の自然数で, 135 と互いに素である自然数 * (2) 441 以下の自然数で, 441 と互いに素である自然数

回答募集中 回答数: 0