学年

質問の種類

化学 高校生

教えて欲しいです🙇‍♀️

【問題】 2022 大阪教育大学 2/25,前期 教育 必要ならば、次の原子量または定数の値を用いよ。 J H=1.0, Cl=35.5, C=12.0, N=14.0, 0=16.0, Cu=64.0 Na=23.0,S=32.0, 気体定数 R=8.31×103 Pa・L/(K・mol) 図1に示した気体密度測定装置を用いて,シクロヘキサンの分子量を測定する実験を 1.00×10p aで行った。以下にはその際の実験方法と結果を記している。これらに関する次の問1~3に答えよ。 ただし、気体は理想気体として取り扱うものとし、熱によるフラスコの勝は無視できるものとする。 ⑥フラスコをビーカーから取り出したのち、このフラスコを冷やしてシクロヘキサンを液化させた。 フラスコが室温まで冷えてから、表面の水をよく拭き取った。 ⑦ アルミニウム箔と輪ゴムを付けたまま, フラスコ全体の質量[g]を電子天秤で 0.01g の桁まで (8 正確に測定した。測定後にアルミニウム箔と輪ゴムをはずして, シクロヘキサンを回収した。 ⑧ フラスコに水をいっぱいに満たし、その水をすべてメスシリンダーに移して体積 KL]を測定した。 ⑨ 結果は以下の通りであった。 a=134.72g, b=135.72g, t=97.0℃, V=0.375L 問1 下線部(ア)の操作を行う際、 安全に実験を行う上で気をつけなくてはならない点を1つ答えよ。 アルミニウム箔 かき混ぜ器 温度計 水 1 クランプ シクロヘキサン 沸騰石 図1 問2 この実験から得られるシクロヘキサンの分子量Mを,問題文中の a,bや気体定数Rなどの記 号を用いて式で表せ。 なお、 ⑥におけるシクロヘキサンの蒸気圧, ならびに液化したシクロヘキサン の体積は無視するものとする。 [実験方法と結果] ① 丸底フラスコの口に, 小さな穴をあけたアルミニウム箔を取り付け、輪ゴムで固定した。 アルミニ ウム箔を取り付けたフラスコの質量 a[g]を、電子天秤で0.01g の桁まで正確に測定した。 ② アルミニウム箔と輪ゴムをはずし、シクロヘキサンを駒込ピペットで約3mLはかり取り, フラスコ の中に入れた。このフラスコに, はずしたアルミニウム箔と輪ゴムを再び取り付けた。 ③図1のようにビーカーを金網の上にのせ、クランプでフラスコの高さを調節し、スタンドに固定し たのち,ビーカーに水を入れた。 ビーカーの水に沸騰石を数個入れた。 ④ (ア)ガスバーナーに点火して、 ビーカーの水を加熱した。 ⑤ビーカーの水の温度が100℃に近づいてきたら, ガスバーナーの火を弱めて、フラスコ内のシク ロヘキサンの量をよく確認し、シクロヘキサンが完全に蒸発してフラスコ内の空気がすべて追い出 されたあと、ガスバーナーの火を消し加熱をやめた。このときのビーカーの水温 [℃]を測定した。 ここで, フラスコ内の温度はこのとき測定した水温と等しいものとする。 問3 この実験から得られたシクロヘキサンの分子量 Mを、 有効数字3桁で答えよ。

回答募集中 回答数: 0
化学 高校生

さっぱりです。教えて欲しいです。

【問題】 2022 大阪教育大学 2/25,前期 教育 必要ならば、次の原子量または定数の値を用いよ。 J H=1.0, Cl=35.5, C=12.0, N=14.0, 0=16.0, Cu=64.0 Na=23.0,S=32.0, 気体定数 R=8.31×103 Pa・L/(K・mol) 図1に示した気体密度測定装置を用いて,シクロヘキサンの分子量を測定する実験を 1.00×10p aで行った。以下にはその際の実験方法と結果を記している。これらに関する次の問1~3に答えよ。 ただし、気体は理想気体として取り扱うものとし、熱によるフラスコの勝は無視できるものとする。 ⑥フラスコをビーカーから取り出したのち、このフラスコを冷やしてシクロヘキサンを液化させた。 フラスコが室温まで冷えてから、表面の水をよく拭き取った。 ⑦ アルミニウム箔と輪ゴムを付けたまま, フラスコ全体の質量[g]を電子天秤で 0.01g の桁まで (8 正確に測定した。測定後にアルミニウム箔と輪ゴムをはずして, シクロヘキサンを回収した。 ⑧ フラスコに水をいっぱいに満たし、その水をすべてメスシリンダーに移して体積 KL]を測定した。 ⑨ 結果は以下の通りであった。 a=134.72g, b=135.72g, t=97.0℃, V=0.375L 問1 下線部(ア)の操作を行う際、 安全に実験を行う上で気をつけなくてはならない点を1つ答えよ。 アルミニウム箔 かき混ぜ器 温度計 水 1 クランプ シクロヘキサン 沸騰石 図1 問2 この実験から得られるシクロヘキサンの分子量Mを,問題文中の a,bや気体定数Rなどの記 号を用いて式で表せ。 なお、 ⑥におけるシクロヘキサンの蒸気圧, ならびに液化したシクロヘキサン の体積は無視するものとする。 [実験方法と結果] ① 丸底フラスコの口に, 小さな穴をあけたアルミニウム箔を取り付け、輪ゴムで固定した。 アルミニ ウム箔を取り付けたフラスコの質量 a[g]を、電子天秤で0.01g の桁まで正確に測定した。 ② アルミニウム箔と輪ゴムをはずし、シクロヘキサンを駒込ピペットで約3mLはかり取り, フラスコ の中に入れた。このフラスコに, はずしたアルミニウム箔と輪ゴムを再び取り付けた。 ③図1のようにビーカーを金網の上にのせ、クランプでフラスコの高さを調節し、スタンドに固定し たのち,ビーカーに水を入れた。 ビーカーの水に沸騰石を数個入れた。 ④ (ア)ガスバーナーに点火して、 ビーカーの水を加熱した。 ⑤ビーカーの水の温度が100℃に近づいてきたら, ガスバーナーの火を弱めて、フラスコ内のシク ロヘキサンの量をよく確認し、シクロヘキサンが完全に蒸発してフラスコ内の空気がすべて追い出 されたあと、ガスバーナーの火を消し加熱をやめた。このときのビーカーの水温 [℃]を測定した。 ここで, フラスコ内の温度はこのとき測定した水温と等しいものとする。 問3 この実験から得られたシクロヘキサンの分子量 Mを、 有効数字3桁で答えよ。

回答募集中 回答数: 0
倫理 高校生

【高校倫理】この問題の答えを教えてください😭お願いします。

24 古代ギリシアの哲学者についての説明として最も適当なものを. 次の①~④のうちから選べ。 ① ソクラテスは, 魂を何より大切にせよと説き, アテネ市民の魂をできるだけ優れたものにするために, その当時に知者とされた人々の考えを批判的に吟味し、その成果を著作として残した。 ②プロタゴラスは, 人間の感覚や判断を超えた普遍的真理を探究し, ノモス的なものに対する人々の関心 を増大させた。 言葉の技術を用いた彼の活動は, ソクラテスに大きな影響を与えた。 ③ プラトンは, ソクラテスを主人公とする多くの対話篇を残した。 そこでは、真理を求めたソクラテスの 精神が継承されており、善く生きるための探究を担うのは理性であるとされた。 ④ プロティノスは, 神秘主義的立場からプラトンのイデア論に独自の解釈を加えて発展させ、万物には善 と悪との二つの根源があり、これらの根源からの流出により世界が構成されると説いた。 <2020年追試〉 25 次のア~ウは古代ギリシアの古典や思想家についての説明である。その正誤の組合せとして正しいものを. 後の①~⑧ のうちから一つ選べ。 ア 『イリアス」 と 「オデュッセイア」においては, 神々が運命を司り、 世界の様々な事象を引き起こすと いう神話的な世界観が展開されている。 イゴルギアスは「あらぬものについて」 で, あらゆる物事について、 実際にありはしない, あっても理解 できないし、理解できたとしても言葉で伝えられないと論じ、 議論によって得られる真理に疑いのまなざ しを向けた。 ウエピクロスは、 あらゆる現象は原子の働きに基づくという知が, 人間を、 迷信や死への恐怖から解放し 得ると考えた。 ① ア ウ正 ②ア正イ正 イ正 ③ ア正 イ誤 ウ正 ④ア正 イ誤 ウ ⑤ ア イ正 ウ正 ⑥ ア イ正 ウ誤 ⑦ ア誤 イ誤 ウ ⑧ ア誤 イ誤 ウ誤 < 2022 年改 >

回答募集中 回答数: 0
倫理 高校生

至急‼️この問題の答えと間違ってる部分を教えてほしいです。

プラトンの立場に対して、アリストテレスは自己実現としての人間の幸福を別の仕方で論じている。 アリ ストテレスの幸福についての記述として最も適当なものを、次の①~④のうちから一つ選べ。 ① 人間の幸福とは苦痛によって乱されることのない魂の平安であり、これを実現するには、公的生活から 離れ、隠れて生きるべきである。 ② 人間の幸福とは肉体という年獄から魂が解放されることであり、これを実現するには、魂に調和と秩序 をもたらす音楽や数学に専念するべきである。 ③ 人間の幸福とは自己自身への内省を通して. 宇宙の理と通じ合うことにあり、そのためには自らの運命 を心静かに受け入れることが大切である。 ④人間の幸福とは行為のうちに実現しうる最高の善であり、これを実現するためには、よき習慣づけによ る倫理的徳の習得が不可欠である。 <2003年追試> 2 ヘレニズム時代になって提唱された哲学・思想についての記述として最も適当なものを、次の①~④の うちから一つ選べ。 ① 戦乱により崩壊したポリスに縛られることなく、個人の内面に目を向け、 人間の幸福は魂の自由と平安 にある, とする考え方。 ②知恵のを具えた哲学者が、善のイデアを基準にして国家を正しく治めることにより、国家の正義が実 現されるという考え方。 ③ 魂の徳が何であるか,その定義を知ることによって、 徳を具えると同時に幸福な人になりうるという 考え方。 ④ 自然現象の根底に存在する不変の原理であるアルケーを,ロゴスによって探求するべきだとする考え 方。 <2007年追試 > 21 理想的な生き方を考察したヘレニズムの思想家についての説明として最も適当なものを、次の①~④の うちから一つ選べ。 ① エピクロスは、あらゆる苦痛や精神的な不安などを取り除いた魂の状態こそが、 幸福であると考えた。 ②エピクロスは、 快楽主義の立場から、いかなる快楽でも可能な限り追求すべきであると考えた。 ③ ストア派の人々は、人間の情念と自然の理法が完全に一致していることを見て取り, 情念に従って生き るべきだと考えた。 ④ ストア派の人々は、いかなる考えについても根拠を疑うことは可能であり、 あらゆる判断を保留するこ とにより、 魂の平安を得られると考えた。 <2021年本試〉 2 次の文章は ストア派の理法の考え方を発展させたキケロが,法の位置づけについて述べたものである。 その内容の説明として最も適当なものを下の①~④のうちから一つ選べ。 まるで盗賊が寄り合って制定した規則同様に、法律という名とは関わりのない多くの有害無益な規則が諸 国に制定されているのは、驚いたことだ。 例えば、 無知で無経験な人間が薬の代わりに致死の毒を処方した 場合、それは医者の処方であるとはとうてい言えないように、 国家の場合にも、たとえ国民が有害な規則を 受け入れたとしても、それは法律の名には値しないのだ。 したがって、法律とは正邪の区別にほかならず。 同時にまた. 万物の根源であるあの太古以来の自然というものの表現でもあるのだ。 そして、悪人を罰し善人 を守護する任を帯びた, 人の世の法律は、この自然を範として定められたものだ。 (『法律について」より) ① 法律は自然に従って定められる限り、善人と悪人を公正に裁くことができる。 というのも, 太古以来 善人の総意によって、 自然そのものが管理され、 形作られてきたからである。 ② 法律は自然に従って定められる限り、善悪と正邪を誤りなく区別することができる。 なぜなら、法が模 範とすべき原初からの自然は、 あらゆるものの根源でもあるからである。 ③ 法律は自然に従って定められただけでは、善人と悪人を公正に裁くことはできない。 というのも、法律 を用いるのは国家であり、 それを構成する国民は自然とは関わりがないからである。 ④ 法律は自然に従って定められただけでは、善悪と正邪を誤りなく区別することはできない。なぜなら、 豊富な知識や経験に基づかなければ、法律は有害なものともなり得るからである。 <2016年本試〉 「人間の本性を踏まえた上で、人はどう振る舞うべきだと考えられてきたのか」 に関して AとBは図書 ~c]に入る語句の組 館で見付けた次の資料1と資料2を比べ、後のメモを作成した。 メモ中の 合せとして最も適当なものを、後の①~⑥のうちから一つ選べ。 資料1 プラトン 「国家」 で紹介されるソフィストの思想 全ての者の自然本性は、他人より多く持とうと欲張ることを書きこととして本来追及するものなのだが、 それが法によって力ずくで平等の尊重へと、脇へ逸らされているのだ。 資料2 キケロ 「義務について」より 他人の不利益によって自分の利益を増すことは自然に反する。 我々が自己利益のために他人から 略奪し他人を害するようになるなら。 社会 これが自然に最も即しているが崩壊することは必然だ。 メモ 資料1によれば、ソフィストは a を重視し、これが社会的に抑圧されているとする。 先生による と資料2の背景にも、 自然の掟を人為的な法や慣習より重視するという資料1 との共通点があるとのこと だが, 資料2では他者を犠牲にしたbの追求は、自然に反する結果を招くとされる。 さらに調べた ところ、 資料2を書いたキケロの思想はストア派の主張を汲んでおりこれはc の一つの源流とさ れているということを学んだ。 ①a 人間の欲求 b 自己の利益 C 功利主義 ②a 人間の欲求 b 自己の利益 C 自然法思想 (3 人間の欲求 b 社会の利益 C 自然法思想 (4) a 平等の追求 b 自己の利益 C 功利主義 ⑤ a 平等の追求 ⑥ b 社会の利益 C 功利主義 a 平等の追求 b 社会の利益 自然法思想 <2023年本試> 2 古代ギリシアの哲学者についての説明として最も適当なものを、次の①~④のうちから選べ。 ① ソクラテスは、魂を何より大切にせよと説き, アテネ市民の魂をできるだけ優れたものにするために. その当時に知者とされた人々の考えを批判的に吟味し、その成果を著作として残した。 プロタゴラスは人間の感覚や判断を超えた普遍的真理を探究し、 ノモス的なものに対する人々の関心 を増大させた。 言葉の技術を用いた彼の活動は、 ソクラテスに大きな影響を与えた。 ③プラトンはソクラテスを主人公とする多くの対話篇を残した。 そこでは、真理を求めたソクラテスの 精神が継承されており、善く生きるための探究を担うのは理性であるとされた。 ④ プロティノスは, 神秘主義的立場からプラトンのイデア論に独自の解釈を加えて発展させ. 万物には善 と悪との二つの根源があり、これらの根源からの流出により世界が構成されると説いた。 <2020年追試 > 2 次のア~ウは古代ギリシアの古典や思想家についての説明である。 その正誤の組合せとして正しいものを. 後の①~⑧ のうちから一つ選べ。 ア 「イリアス」と「オデュッセイア」においては, 神々が運命を司り。 世界の様々な事象を引き起こすと いう神話的な世界観が展開されている。 イゴルギアスは「あらぬものについて」 で, あらゆる物事について、 実際にありはしない あっても理解 できないし、理解できたとしても言葉で伝えられないと論じ、 議論によって得られる真理に疑いのまなざ しを向けた。 ウエピクロスは、 あらゆる現象は原子の働きに基づくという知が, 人間を. 迷信や死への恐怖から解放し 得ると考えた。 ①ア正 正 ウ正 ③ ア正 ウ正 イ誤 イ正 ウ 正 ⑥ ア イ誤 ウ正 ⑧ ア誤 ② ア正 イ正 ウ誤 ア 正 イ誤 ウ誤 イ正 ウ イ誤 ウ <2022年改〉 ⑤ ア ⑦ア誤 ギリシア思想 第2章 ギリシア思想- 23

回答募集中 回答数: 0
数学 高校生

129の(2)の証明は、このような書き方でも大丈夫ですか?

るとき、 分線とう 基本120 補充 例題 129 三角形に関する等式の証明 X △ABCにおいて,次の等式が成り立つことを証明せよ。 ✓ asin AsinC+bsin BsinC=c(sin'A+sinB) ②a(bcos C-ccosB)=62-c2 CHART & SOLUTION 207 209 00000 p.194 基本事項 12 三角形の辺や角の等式 辺だけの関係に直す 等式の証明はか. 178 INFORMATION の1~3の方法がある。 (1) はるの方法, (2) は1の方 法で証明しよう。 a (1)正弦定理から導かれる sinA= 27 など(Rは外接円の半径)を,左辺と右辺それぞれ に代入する。 2R (2)余弦定理から導かれる cosC= a2+62-c2 2ab などを左辺に代入する。 解答 DS (1)△ABC の外接円の半径をRとすると,正弦定理により asin AsinC+bsin BsinC =a- ac 2R 2R +6. b 2R 2R C Ca2+62) 4R2 a c(a²+b²) c (sin²A + sin²B) = c{(2)² + ( 20 ) } = c(a²- =cl(2)+(2)-(+6) 2R したがって, 与えられた等式は成り立つ。 4R2 別解 △ABCの外接円の半径をR とすると, 正弦定理により a=2RsinA, 6=2RsinB, c=2RsinC よって (左辺) =2Rsin AsinC+2Rsin' Bsin C =2R sin C(sin²A + sin²B) =c(sin'A+sinB) = (右辺) したがって, 与えられた等式は成り立つ。 4章 14 辺だけの関係に直す。 sinA= a 2R' b sin B= 正弦定理と余弦定理 2R' sinC= を代入。 2R inf. 別解では,角だけの 関係に直してうまくいった が 数学Ⅰの範囲では,a, b, c を sinAなどの角だ けの関係に直しても、その 後の変形の知識が不十分で うまくいかないことがある。 そのため、辺だけの関係に もち込む方がスムーズであ ることが多い。 cos C= a²+b²-c² 2ab (2) 余弦定理により a (bcos C-ccosB) = abcosC-accos B a²+b²-c² c²+a²-b² =ab₁ ac 2ab 2ca = (a²+b²-c²)-(c²+a²-b²) = b² — c² 2 代入。 したがって, 与えられた等式は成り立つ。 cos B= c²+a²-b² を 2ca

解決済み 回答数: 1
数学 中学生

345わからないです教えてください

す 得点 100点 B2 実戦レベル 31標準レベル て,箱ひげ 最大 15 を表す る。 四分位範囲と箱ひげ図 右の表は、クイズ大 会に参加した9人の得点で ある。 表をもとにして,箱 ひげ図をかくと、右の図の ようになった。 a,bの値を 求めなさい。 <15点〉 (R6秋田) 59913141516 (a 3460 表 913 16 208 15 (単位:点) T 4 箱ひげ図の活用 あるグループの1人 図1 図 5 a 146 20 (点) が15問の○×クイズに挑 戦した。 右の図1は、7人 の正解した問題数のデータ を,箱ひげ図に表したもの である。 11 14 (問) 図2 24 10 14 10/17 20 b 10.5 2 ぶ 値を読 ない 大値、 ラム る。 だけでは のである。この記録を箱 ひげ図で表したとき、もっ ヒストグラムと箱ひげ図 右の図は,小学校 (人) 6年生40人のソフトボー [10] ル投げの記録を整理し, ヒストグラムで表したも A61 UP 8 あとから,みずきさんが同じ15問の○×クイズ に挑戦した。図2は、7人とみずきさんを合わせた 8人の正解した問題数のデータを箱ひげ図に表した 20 ものである。 <15点×2〉 (R6富山) (1) みずきさんの正解した問題数として考えられ る値は2つある。 その値をそれぞれ求めよ。 ヒント 6 4 2 05101520253035404550(m) ■ (2) 8人のデータの平均値を求めよ。 とも適当な図を,次のア~エまでの中から選びなさい。 <15点〉 (R6愛知) 5 5 ウ 10 15 20 25 30 35 404550(m) 5 10 15 20 25 3035404550(m) エ 5 10 15 20 25 30 35 40 45 50(m) 5 10 15 20 25 30 35 40 45 50(m) 実生活への活用力 箱ひげ図の活用 下の図は, 札幌市,横浜市, 那覇市について, 2022年における, 降水量が1mm以上であった日 の月ごとの日数をすべて調べ,箱ひげ図にまとめた ものである。 この図から読みとれることとして正し いものを次のア~エのうちからすべて選び, 記号で 答えなさい。 <10点×2)(R6沖縄) 札幌市 なに さっぽろ I ない 3 箱ひげ図の活用 A62 う ・右の図は, A組, B組 C (点) 組D組のそれぞれ31人の生徒 が受けた, 100点満点の数学の テスト結果を,箱ひげ図に表し 80 たものである。80点以上の生徒 の人数がもっとも多い組はどれ か、次のア~エからもっとも適 切なものを1つ選び、その記号 を書きなさい。ただし,得点は 整数とするヒント 横浜市 100 那覇市 90 70 2345678910111213141516171819202122(日) ア 1年間に降った降水量がもっとも多いのは札幌 市である。 60 イ 札幌市,横浜市, 那覇市いずれも9日以上の月 が半数以上あった。 50 40 30 A組 B組 C組D組 ウ 那覇市は10日以上14日未満の月が3か月以上 あった エデータの四分位範囲がもっとも小さいのは横浜 市である。 <20点〉 (R6三重) ア A組 イ B組 ウ C組 エ D 組 それぞれの市について、データの個数は である。 アイ 順に並べたときの24番目の値である。

解決済み 回答数: 1
1/114