学年

質問の種類

数学 高校生

大問105だけ、はさみうちの原理使ってるんですけど、使うときと使わない時の判断ってどうやってるんですか?式のどの部分を見たら「はさみうち」使って解く!って分からんですか?

第2章 極限 三角関数と極限 1 関数の極限と大小関係 limf(x) =α, limg(x) =β とする。 xa pix 1 xがαに近いとき,常に f(x) ≦g(x)ならば a≦β 2xがαに近いとき,常に f(x) (x)g(x) かつα=β ならば limh(x)=a 注意 上の事柄は,x→∞, x→∞の場合にも成り立つ。 ■ 次の極限を求めよ。 [104, 105] 1-cos 3x □ 104(1) lim x→0 x2 1 *105(1) limxcos 0+x x 第2節 関数の極限 31 0 (2) lim sinx2 x01−cosx (2) lim 1+sinx XII∞ x 第2章 極限 注意2を「はさみうちの原理」 ということがある。 例題 3 limf(x)=∞ のとき,十分大きいxで常に f(x)≦g(x) ならば limg(x) =∞ |2 三角関数と極限 sinx lim x0 x x =1, lim -1 (角の単位はラジアン) x-0 sinx STEPA 中心が 0, 直径 ABが4の半円の弧の中点をMとし, Aから出た光線 が弧 MB 上の点Pで反射して, AB上の点Qにくるとする。 (1) 0=∠PAB とするとき, OQ の長さを0で表せ。 (2) PBに限りなく近づくとき, Qはどんな点に近づいていくか。 |指針 Aから出た光線か MB上の点Pで反射して, AB上の点Qにくるとき ∠OPA = ∠OPQ sin O 求めるものを式で表し、 などの極限に帰着させる。 解答 (1) 右の図において ✓ 99 次の極限を調べよ。 ZOQ= ∠OPA=∠OAP=0 ∠PQB= ∠PAQ+ ∠APQ=30 M 2 (1) lim cos- *(2) lim (3)lim x tanx x–0 sinx よって ∠OQP=30 △OPQに正弦定理を用いると,P=2 であるから 30 0 Q B ■次の極限を求めよ。 [ 100~103] ✓ 100 (1) lim x→0 sin 4x XC sin2x *(2) lim x-0 sin5x (3) lim x-0 tant sin3x tan2x-sinx □ 101 (1) lim- *(2) lim x→0 x 1-cos 2x x-0 xsinx (3) lim x→0 sin3x+sinx sin2x □ 102(1) lim COS X x-Sin2x (2) lim- sin2x (3) lim x01−cosx 103*(1) lim tan x X10 x *(4) lim- sinлx x-1 x-1 1−cosx t- sinx STEPB *(2) lim X→π OQ 2 sin O sin(-30) また, sin (π-30)=sin30 であるから 2sin OQ= sin 30 (2)PがBに限りなく近づくとき, 0 +0 である。 このとき 2 sin 2 sin 3 2 lim OQ= lim lim 8+0 o sin 30 0-40 3 0 sin 36 3 よって,Qは線分 OB上の0からの距離にある点に近づいていく。圏 □ 106 半径αの円周上に動点Pと定点Aがある。 Aにおける接線上に AQ=AP であるような点Qを直線OAに関してPと同じ側にとる。PがA PQ に限りなく近づくとき, AP の極限値を求めよ。 ただし,Pは ∠AOP (0<< AOP < 1)に対する弧AP の長さを表す。 sin(x-7) x-π (3) lim x-- tanx xn ax+b 1 sin(sinx) (5) lim x→0 sinx 1 107 等式 lim (6) limxsin COS x 2x が成り立つように, 定数a, b の値を定めよ。

未解決 回答数: 1
数学 高校生

数Ⅱ黄チャート 高次方程式 基本例題62を別解2の方法で解かなきゃいけないんですけど、解き方を忘れてしまったので、解説お願いします🙇

104 基本 例題 62 解から係数決定 (虚数解) 00000 3次方程式 x+ax²+bx+10=0 の1つの解がx=2+i であるとき, 実数 の定数α, bの値と他の解を求めよ。 (山梨学院大 p.98 基本事項2.基本61 解 CHART & SOLUTION x=αがf(x)=0の解⇔f(α) = 0 代入する解は1個(x=2+i) で, 求める値は2個 (αとb) であるが, 複素数の相等 A, B が実数のとき A+Bi=0 A = 0 かつ B=0 により,a,bに関する方程式は2つできるから, a,bの値を求めることができる。 また,実数を係数とするn次方程式が虚数解αをもつとき,共役な複素数も解であるこ とを用いて,次のように解いてもよい。 別解 2αとが解であるから, 方程式の左辺は (x-α)(x-2) すなわち x-(a+α)x+a で割り切れることを利用する。 別解 3 3つ目の解をkとして, 3次方程式の解と係数の関係を利用する。 x=2+iがこの方程式の解であるから ここで, (2+i=2°+3・2'i+3.2i+i=2+11i, (2+i)+α(2+i)+6(2+i) +10=0 (2+i)=22+2・2i+i=3+4i であるから 2+11i+α(3+4i)+6(2+i) +10=0 iについて整理すると 3a+26+12,4α+6+11 は実数であるから 3a+26+12+(4a+6+11)i = 0 3a+2b+12=0, 4a+b+11=0 これを解いて a=-2,b=-3 ゆえに、方程式は x-2x2-3x+10=0 f(x)=x-2x2-3x +10 とすると f(-2)=(-2)-2-(-2)2-3-(-2)+10=0 よって, f(x) は x+2 を因数にもつから f(x)=(x+2)(x²-4x+5) したがって, 方程式は (x+2)(x-4x+5)=0 x+2=0 または x2-4x+5=0 x2-4x+5=0 を解くと x=2±i よって, 他の解は x=-2, 2-i 別解 1 実数を係数とする3次方程式が虚数解 2+i をもつ から,共役な複素数 2-iもこの方程式の解である。 よって,x+ax²+bx +10 は{x-(2+i)}{x-(2-i)} すなわち x4x+5で割り切れる。 mfx-2=i と変形して 両辺を2乗すると x2-4x+5=0 これを利用して x+ax²+bx+10の次数を 下げる方法 (別解 1の3行 目以降と同じ) もある。 (p.93 基本例題 55 参照) この断り書きは重要。 A, B が実数のとき A+Bi=0 ⇔ A=0 かつ B=0 ← 組立除法 1-2-3 10-2 -2 8-10 1-4 50 の部分の断り書きは 重要。

回答募集中 回答数: 0
数学 高校生

(i)と(iii)の問題についてです。 二枚目の写真の答え方でもいいですか?

72 第2章 関数と関数のグラフ 練習問題 5 2次関数 y=x2-6x+10 のグラフを次のように移動させてできるグラ フの方程式を求めよ. (i) x軸に関して対称移動 (i) y 軸に関して対称移動 (Ⅲ) 原点に関して対称移動 S 精講 対称移動についても平行移動と同様、頂点に注目するのがポイント です.ただし,対称移動の場合はグラフの上下が反転する場合があ ります.上下が反転するときはの係数の符号が反転することになります。 解答 =g 平方完成すると (y軸対称 y=(x-3)2+1 なので,頂点の座標は (3,1) である. 元の (i) x軸に関して対称移動すると,頂点は (3-1)に移り,グラフの上下が反転す (-3, 1) (-3,-1) 0 (3,1) グラフ (3, -1) X 求めるグラフの方程式は, y=(x-3)-1 (=u2+6-10) り長いび 原点対称った るので㎡の係数は -1 となる。よっては (x軸対称) (y軸に関して対称移動すると, 頂点は (-3,1) に移り、グラフの形状は 変化しないのでの係数は1となる.よって, 求めるグラフの方程式は, y=(x+3)'+1 (=x2+6x+10) (原点に関して対称移動すると,頂点は(-3,-1)に移り、グラフの上下 が反転するのでの係数は-1となる. よって、求めるグラフの方程式は、 y=(x+3)-1 (=-x²-6x-10) コメント 対称移動においても,平行移動と同じように一般的な法則があります。 対称移動の一般則 x 軸に関して対称移動

未解決 回答数: 1
倫理 高校生

至急‼️この問題の答えと間違ってる部分を教えてほしいです。

プラトンの立場に対して、アリストテレスは自己実現としての人間の幸福を別の仕方で論じている。 アリ ストテレスの幸福についての記述として最も適当なものを、次の①~④のうちから一つ選べ。 ① 人間の幸福とは苦痛によって乱されることのない魂の平安であり、これを実現するには、公的生活から 離れ、隠れて生きるべきである。 ② 人間の幸福とは肉体という年獄から魂が解放されることであり、これを実現するには、魂に調和と秩序 をもたらす音楽や数学に専念するべきである。 ③ 人間の幸福とは自己自身への内省を通して. 宇宙の理と通じ合うことにあり、そのためには自らの運命 を心静かに受け入れることが大切である。 ④人間の幸福とは行為のうちに実現しうる最高の善であり、これを実現するためには、よき習慣づけによ る倫理的徳の習得が不可欠である。 <2003年追試> 2 ヘレニズム時代になって提唱された哲学・思想についての記述として最も適当なものを、次の①~④の うちから一つ選べ。 ① 戦乱により崩壊したポリスに縛られることなく、個人の内面に目を向け、 人間の幸福は魂の自由と平安 にある, とする考え方。 ②知恵のを具えた哲学者が、善のイデアを基準にして国家を正しく治めることにより、国家の正義が実 現されるという考え方。 ③ 魂の徳が何であるか,その定義を知ることによって、 徳を具えると同時に幸福な人になりうるという 考え方。 ④ 自然現象の根底に存在する不変の原理であるアルケーを,ロゴスによって探求するべきだとする考え 方。 <2007年追試 > 21 理想的な生き方を考察したヘレニズムの思想家についての説明として最も適当なものを、次の①~④の うちから一つ選べ。 ① エピクロスは、あらゆる苦痛や精神的な不安などを取り除いた魂の状態こそが、 幸福であると考えた。 ②エピクロスは、 快楽主義の立場から、いかなる快楽でも可能な限り追求すべきであると考えた。 ③ ストア派の人々は、人間の情念と自然の理法が完全に一致していることを見て取り, 情念に従って生き るべきだと考えた。 ④ ストア派の人々は、いかなる考えについても根拠を疑うことは可能であり、 あらゆる判断を保留するこ とにより、 魂の平安を得られると考えた。 <2021年本試〉 2 次の文章は ストア派の理法の考え方を発展させたキケロが,法の位置づけについて述べたものである。 その内容の説明として最も適当なものを下の①~④のうちから一つ選べ。 まるで盗賊が寄り合って制定した規則同様に、法律という名とは関わりのない多くの有害無益な規則が諸 国に制定されているのは、驚いたことだ。 例えば、 無知で無経験な人間が薬の代わりに致死の毒を処方した 場合、それは医者の処方であるとはとうてい言えないように、 国家の場合にも、たとえ国民が有害な規則を 受け入れたとしても、それは法律の名には値しないのだ。 したがって、法律とは正邪の区別にほかならず。 同時にまた. 万物の根源であるあの太古以来の自然というものの表現でもあるのだ。 そして、悪人を罰し善人 を守護する任を帯びた, 人の世の法律は、この自然を範として定められたものだ。 (『法律について」より) ① 法律は自然に従って定められる限り、善人と悪人を公正に裁くことができる。 というのも, 太古以来 善人の総意によって、 自然そのものが管理され、 形作られてきたからである。 ② 法律は自然に従って定められる限り、善悪と正邪を誤りなく区別することができる。 なぜなら、法が模 範とすべき原初からの自然は、 あらゆるものの根源でもあるからである。 ③ 法律は自然に従って定められただけでは、善人と悪人を公正に裁くことはできない。 というのも、法律 を用いるのは国家であり、 それを構成する国民は自然とは関わりがないからである。 ④ 法律は自然に従って定められただけでは、善悪と正邪を誤りなく区別することはできない。なぜなら、 豊富な知識や経験に基づかなければ、法律は有害なものともなり得るからである。 <2016年本試〉 「人間の本性を踏まえた上で、人はどう振る舞うべきだと考えられてきたのか」 に関して AとBは図書 ~c]に入る語句の組 館で見付けた次の資料1と資料2を比べ、後のメモを作成した。 メモ中の 合せとして最も適当なものを、後の①~⑥のうちから一つ選べ。 資料1 プラトン 「国家」 で紹介されるソフィストの思想 全ての者の自然本性は、他人より多く持とうと欲張ることを書きこととして本来追及するものなのだが、 それが法によって力ずくで平等の尊重へと、脇へ逸らされているのだ。 資料2 キケロ 「義務について」より 他人の不利益によって自分の利益を増すことは自然に反する。 我々が自己利益のために他人から 略奪し他人を害するようになるなら。 社会 これが自然に最も即しているが崩壊することは必然だ。 メモ 資料1によれば、ソフィストは a を重視し、これが社会的に抑圧されているとする。 先生による と資料2の背景にも、 自然の掟を人為的な法や慣習より重視するという資料1 との共通点があるとのこと だが, 資料2では他者を犠牲にしたbの追求は、自然に反する結果を招くとされる。 さらに調べた ところ、 資料2を書いたキケロの思想はストア派の主張を汲んでおりこれはc の一つの源流とさ れているということを学んだ。 ①a 人間の欲求 b 自己の利益 C 功利主義 ②a 人間の欲求 b 自己の利益 C 自然法思想 (3 人間の欲求 b 社会の利益 C 自然法思想 (4) a 平等の追求 b 自己の利益 C 功利主義 ⑤ a 平等の追求 ⑥ b 社会の利益 C 功利主義 a 平等の追求 b 社会の利益 自然法思想 <2023年本試> 2 古代ギリシアの哲学者についての説明として最も適当なものを、次の①~④のうちから選べ。 ① ソクラテスは、魂を何より大切にせよと説き, アテネ市民の魂をできるだけ優れたものにするために. その当時に知者とされた人々の考えを批判的に吟味し、その成果を著作として残した。 プロタゴラスは人間の感覚や判断を超えた普遍的真理を探究し、 ノモス的なものに対する人々の関心 を増大させた。 言葉の技術を用いた彼の活動は、 ソクラテスに大きな影響を与えた。 ③プラトンはソクラテスを主人公とする多くの対話篇を残した。 そこでは、真理を求めたソクラテスの 精神が継承されており、善く生きるための探究を担うのは理性であるとされた。 ④ プロティノスは, 神秘主義的立場からプラトンのイデア論に独自の解釈を加えて発展させ. 万物には善 と悪との二つの根源があり、これらの根源からの流出により世界が構成されると説いた。 <2020年追試 > 2 次のア~ウは古代ギリシアの古典や思想家についての説明である。 その正誤の組合せとして正しいものを. 後の①~⑧ のうちから一つ選べ。 ア 「イリアス」と「オデュッセイア」においては, 神々が運命を司り。 世界の様々な事象を引き起こすと いう神話的な世界観が展開されている。 イゴルギアスは「あらぬものについて」 で, あらゆる物事について、 実際にありはしない あっても理解 できないし、理解できたとしても言葉で伝えられないと論じ、 議論によって得られる真理に疑いのまなざ しを向けた。 ウエピクロスは、 あらゆる現象は原子の働きに基づくという知が, 人間を. 迷信や死への恐怖から解放し 得ると考えた。 ①ア正 正 ウ正 ③ ア正 ウ正 イ誤 イ正 ウ 正 ⑥ ア イ誤 ウ正 ⑧ ア誤 ② ア正 イ正 ウ誤 ア 正 イ誤 ウ誤 イ正 ウ イ誤 ウ <2022年改〉 ⑤ ア ⑦ア誤 ギリシア思想 第2章 ギリシア思想- 23

回答募集中 回答数: 0
数学 高校生

数学Iについて (2)"h(x)の最大値が0より大きくなる"部分のところがわかりません。なぜ最小値ではなく最大値なのでしょうか?

166 第2章 2次関数 SE **** 例題 88 2つの放物線の位置関係 2≦x≦2 の範囲で、関数f(x)=x2+2x-2,g(x)=-x2+2x+a+1 について、次の条件を満たすような定数αの値の範囲をそれぞれ求めよ。 (1) すべてのxに対して、f(x)<g(x) (2) あるxに対して,f(x)<g(x) (3) すべての組 x1, x2 に対して,f(x)<g(x2) (4) ある組X1,X2に対して、f(x)<g(x2) グラフをかいて, f(x) と g(x)の位置関係をイメージする.また,「すべて」 と 「ある」 [考え方] については,第3章 「集合と命題」で詳しく解説している。 (1)と(2)(x)(x)に同じxの値を代入したときの大小を比較している. (2)−2≦x≦2 の範囲で xx (1)−2≦x≦2 の範囲のどのxの値に対 しても、つねにxg(x) であ) を満たすxの値が存在することと、 ることと,この区間で,y=g(x)の この区間で,y=g(x)のグラフが 1) グラフが y=f(x)のグラフより y=f(x)のグラフより上側になる 部分がどこかにあることは同じ、 ねに上側にあることは同じ. 24842y=f(x) y 12 y=g(x)\ y=f(x) y4 O X f(x)<g(x)1 y=g(x) h(x)=g(x)-f(x) とおくと, (1) は, −2≦x≦2 の範囲のどのようなxの値でも f(x)<g(x),つまり,h(x)>0であることが条件である。 (2)は,-2≦x≦2 の範囲で, f(x) <g(x),つまり、(x)>0 となるxの値が存在する ことが条件である。 解答 h(x)=g(x)f(x)とおくと、 h(x)=(-x2+2x+α+1)(x2+2x-2) =-2x2+a+3 (1) 2≦x≦2のすべてのxに対して, h(x)>0 となる 条件は,この区間におけるh(x) の最小値が0より大き くなることである. h(x)>0 のとき, g(x) f(x) つまり g(x)はf(x)の上側. y=h(x)のグラフは,上に凸で,軸が直線 x=0 で あるから,x=-2 と x=2で最小値をとる. YA y=h(x) よって, より,α-50 つまり h(-2)=-2・(-2)^+α+3=α-5 ん(2)=-2.22+α+3=α-5 (2)2x2のあるxに対して, h(x)>0 となる条件 は、この区間におけるh(x) の最大値が0より大きくな ゑことである. y=h(x) のグラフは上に凸で,軸がx=0 より, x=0で最大値をとる。 最小 最小 A IV a>5 -20 2 x α+3] 最大 y=h(x) 10 x よって, h(0)=α+3>0 より a>-3 考え方 (3) (4)に -24x (3)- の y=f( (4) 解答

回答募集中 回答数: 0
1/89