学年

質問の種類

数学 高校生

この別解の途中式が知りたいです。 何度しても答えと違う式が出てきてしまって😿😿

172 重要 例題 1082円の共通接線 00000 C:x2+y2=4と円Cz:(x-5)'+y2=1の共通接線の方程式を求めよ。 指針 1つの直線が2つの円に接するとき,この直線を2円の 共通接線という。 共通接線の本数は2円の位置関係によって変わるが,この 問題のように、2円が互いに外部にあるときは,共通内接線 と共通外接線 がそれぞれ2本の計4本がある。 本 共通内線 また、共通接線を求めるときは, 共通外接線 と考えて進めた方がらくなことが多い。 C上の点(x1,y) における接線 xix+yiy=4円 C2 にも接する yA 上の接点の座標を (x1, y1) とすると 2+y^2=4 ...... 解答 に対する 接線の方程式は xx+yiy=4 ...... ② 2 C1 C2 直線 ②が円 C2に接するための条件は,円C2の 中心 (5,0) 直 ②の距離が,円 C2 の半径1 -2 O 2 4 16 -2 に等しいことであるから |5x1−4| =1 ① を代入して整理すると |5x1-4|=2 よって 5x1 -4 = ±2 6 したがって x1 = 2 5 5 6 x=1のとき,①から 64 y₁= ゆえに 25 y=±- 8-5 x₁= 2 のとき,①から 96 y₁= 25 よって = ゆえに、②から求める接線の方程式は 5 6 5 注意 直線 3x±4y=10 は共通内接線(上の図のA, B), 直線x±2√6y=10は共 接線 (上の図のCD) である。 別解] 共通接線の方程式をy=mx+n とすると,これが円 C, C2に接する条 11/8/2/22=4, 1/242/8y=4 すなわち 3x±4y=10,x±2√6y=1 4√6 5x1 0-8-S In それぞれ 15m+nl =2, したがって √m²+(-1)² =1 √m²+(-1)² ||=2ym²+1, 15m+nl=√m²+1 ー中心と直線の距離 よって ||=2|5m+n| ゆえに n=-10m 1 3n=-10 このようにして,一方の文字を消去し, 連立方程式を解く。 た asks [練習 円 Ci:x2+y2=9とC2:x2+(y-2)=4の共通接線の方程式を求めよ。 ③ 108

未解決 回答数: 1
数学 高校生

至急お願い致します 画像右のページ 上から2行目の式 2x-y=0 はどこから導き出すのですか? 教えてください

UNIT 2 図形と方程式 STEP 1 BASIC CHECK 12 14 (考え方 直線に関して対称な点直線 x+8-0 に関して、点P(-6, 3)と対称な点Qを求めよ。 京のは、直線に関して点Pと対称な点であるから、直線は線分PQの頂直二等分線である。 解答 直線は線分PQの垂直二等分線である。 点Qの座標を(a,b) とおくと, 線分PQの中点は(ab) これが直線上にあるから 3.9-5_b+3 +8=0 2 2 すなわち 34-b-20 ······ⓘ るから 3 1.3-1 a+6 すなわち a+3b-40 ② ①. ② より a-1.0-1 よって Q(1,1) ….. 香 を利用する。 また、直線PQ 直線に垂直であり、直線PQのであ←PQに交わるの .… ① x+2y+k0...... ② 円①の中心は原点(0, 0). 半径は5である。 また,円 ① の中心と直線⑦の距離をと すると d- Ik k √1+2 √5 円①と直線②が接するとき TEL -√5 √6 |k|-6 P(-5, 3) R =±5 ⓘ √6 20 0 Q (a,b) 16 【円と直線が接する条件】 - と直線が接するとき、定数の値を求めよ。 また、このときの被点の座標を求めよ。 考え方 円Cの中心と直線の距離をd. 円の半径をrとすると 円℃と直線が接する der 点の座標は、円の中心を通り直嫁に垂直な直線をとするとき、直線の交点の 座標として求めることができる。 である 解答 V6 a+5 上にある。 (2) 点二等分線 である。 連立方程式を解く。 点との距離の公式を利用す る。 原点を通り、直線②に垂直な直線は 2x-10① ②,③を立させて、交点の座標を求めると よって 5のとき、接点(-1,-2) k-3 のとき、魔点 〔別解〕 判別式を利用する。) ① ② からを消去すると 5 +4ky+k-50...... ④ 円①と直線②が接するとき、 ⑥は重解をもつから、判別式をDとすると D-(4k)-4-5-(²-5)-0 R-25 ±5 接点の座標は④の重解であるから 4k 2-5 ②から接点の座標は (1/2) 1-I のとき、接点(-1,-2) のとき、 接点(1,2) AN 円パー20は、中心が原点 半径が250円である。 2円の中心間の距離をdとすると d-√6 +3-3√5 求める円の半径とすると、 2円が外接する条件は 3√5-r+2√5 r-√√5 よって、求める円の方程式は (x-6)+(-3) - (√5)* すなわち (x-6)+(-3)=5 - 11 1612円の位置関係点 (6.3)を中心とし、20に外接する円の方程式を求めよ。 (考え方) 円と直線の位置関係と同様に,2円の位置関係についても半径と中心間の距離に注目して、図形的 に処理することを考える。 3 0 2√6 とするとがで あるから、 6 ←分数計算をさけるため、 ←日の代わりに ←のは De より 一日に 25 +20 ←3円の中心と める。 UNIT 2 1円のそれぞれ 円の中心 外接する とすると

回答募集中 回答数: 0
1/2