学年

質問の種類

数学 高校生

この別解の途中式が知りたいです。 何度しても答えと違う式が出てきてしまって😿😿

172 重要 例題 1082円の共通接線 00000 C:x2+y2=4と円Cz:(x-5)'+y2=1の共通接線の方程式を求めよ。 指針 1つの直線が2つの円に接するとき,この直線を2円の 共通接線という。 共通接線の本数は2円の位置関係によって変わるが,この 問題のように、2円が互いに外部にあるときは,共通内接線 と共通外接線 がそれぞれ2本の計4本がある。 本 共通内線 また、共通接線を求めるときは, 共通外接線 と考えて進めた方がらくなことが多い。 C上の点(x1,y) における接線 xix+yiy=4円 C2 にも接する yA 上の接点の座標を (x1, y1) とすると 2+y^2=4 ...... 解答 に対する 接線の方程式は xx+yiy=4 ...... ② 2 C1 C2 直線 ②が円 C2に接するための条件は,円C2の 中心 (5,0) 直 ②の距離が,円 C2 の半径1 -2 O 2 4 16 -2 に等しいことであるから |5x1−4| =1 ① を代入して整理すると |5x1-4|=2 よって 5x1 -4 = ±2 6 したがって x1 = 2 5 5 6 x=1のとき,①から 64 y₁= ゆえに 25 y=±- 8-5 x₁= 2 のとき,①から 96 y₁= 25 よって = ゆえに、②から求める接線の方程式は 5 6 5 注意 直線 3x±4y=10 は共通内接線(上の図のA, B), 直線x±2√6y=10は共 接線 (上の図のCD) である。 別解] 共通接線の方程式をy=mx+n とすると,これが円 C, C2に接する条 11/8/2/22=4, 1/242/8y=4 すなわち 3x±4y=10,x±2√6y=1 4√6 5x1 0-8-S In それぞれ 15m+nl =2, したがって √m²+(-1)² =1 √m²+(-1)² ||=2ym²+1, 15m+nl=√m²+1 ー中心と直線の距離 よって ||=2|5m+n| ゆえに n=-10m 1 3n=-10 このようにして,一方の文字を消去し, 連立方程式を解く。 た asks [練習 円 Ci:x2+y2=9とC2:x2+(y-2)=4の共通接線の方程式を求めよ。 ③ 108

未解決 回答数: 1
数学 高校生

次の(2)の問題で何故青線でkを-1と置くのでしょうか?どなたか解説お願いします🙇‍♂️

思考のプロセス ... 2 円 x2 + y = 4 ... ① と x + y2 + 4x - 2y+4 = 0 ・・・ ② について (1) 2円 ①,② は, 異なる2点で交わることを示せ。 (2)2円 ①,② の2つの交点を通る直線の方程式を求めよ。 (3)2円 ①,②の2つの交点と原点を通る円の方程式を求めよ。 (1)《ReAction 2円の位置関係は,中心間の距離と半径の和 差を比べよ (2),(3) 素直に考えると・・・ 例題101 ①②の交点の座標を実際に求め, それらを通る直線や円を考える。 ← 計算が繁雑 ↓見方を変える 《ReAction 2つの図形f(x,y)=0とg(x,y)=0 の交点を通る図形は, f (x,y) +kg (x, y) = 0 とおけ 2つの円のときも、同様に考える。 例題 84) ①:x2+y2-4=0, ②: x+y2+4x-2y+4=0に対して移項して右辺を0にする。 (x2+y^+4x-2y+4+h(x2+y^-4) = 0 が表す図形は, ① ② の交点を通る円または直線を表す (Play Back 9 参照)。 解 (1) ② を変形すると (x+2)+(x-1)=1 題 よって, 2円の中心間の距離 d は 01 d=(-2)+1 = √5 円 ①,② の半径をそれぞれn, P2 とすると 1円①の中心は (0,0) 円②の中心は (-2, 1) • n=2,12=1 11-22-1 =2-1=1, n+r=2+1=3 したがって, n<d<nt が成り立つから, 円 ①,②は異なる2点で交わる。 題! 84 調 (2) 2円 ①,②の交点を通る円または直線の方程式は、 ① を除いて次のように表すことができる。 (x2+y2+4x-2y+4)+k(x+y-4) = 0 (3 k=1のとき,③は直線を表すから (x2 +y +4x-2y+4) + (−1)(x + y -4) = 0 よって 2x-y+4=0 2つの円が異なる2点で 交わる条件(数学A )。 Play Back 9 参照 (x+y2-4)+k(x+y2 +4x-2y+4) = 0 とおいてもよい。 このと きは円②を除く。 k=-1/

解決済み 回答数: 1
数学 高校生

解説お願いします。 写真の問題の(イ)赤字の部分に疑問があります。 解説では②の半径から①の半径を引いてますが、①の半径から②の半径を引くのはダメなのかどうか教えてほしいです。Kは整数と書いてないので、例えばKが24.5だった場合、①の半径の方が大きくなると思いました。 ... 続きを読む

例題 1062円の位置関係の原のCSGO 2つの円x+y2=1... ①, x2+y2-6x+8y+k=0 ・・・② が接すると き、定数kの値を求めよ。 条件の言い換え 思考プロセス 円の半径を,r' (rr)とし、 円の中心間の距離をdとすると 「外接」 |内接 2円が外接 d=rtr′ 2円が接する 2円が内接 d=r-r Action» 2円の位置関係は、中心間の距離と半径の和差を比べよ | ①は,原点を中心とし, 半径1の円を表す。 また、②を変形すると (x-3)2 + (y+4) = 25-k ②は円を表すからk<25であり,中心は (3,-4), 半径は25である。 この2つの円の中心間の距離をd とすると d=√32+(-4)=5 (ア) 2つの円が外接するとき 中心間の距離 dが2つの円の半径 3 x の和に一致するから 5=1+√25-k 25-k 010-0 25-k>0より<25 ① の中心は (0, 0) ② の中心は (3,-4) 内接と外接の2つの場合 に分けて考える。 ① の半径を,②の半 径を とすると 外接: d=ntr 内接: d = |n-m| 4 = √25-k 両辺を2乗すると 16= 25-k よって k = 9 これは③を満たす。 (イ) 2つの円が内接するとき 中心間の距離dが2つの円 の半径の差に一致するから 5=√25-k-1 3 x 0 d √25-k 6 = √25-k ... ④ 両辺を2乗しているか ら、解が ③ を満たすかど うか確認する。 A=B⇒A'=B2 は成り立つが、 A2=B2A=B は成り立つとは限らない 両辺を2乗すると 36=25-k よって k = -11 これは④を満たす。 (ア)(イ)より,求めるんの値は k = 9, -11 両辺を2乗しているか ら、解が④を満たすかど うか確認する。

解決済み 回答数: 1
数学 高校生

この問題やこの解き方を使う問題について質問です。下線部を引いてあるように、なぜk≠-1の時円を表し、k=-1の時直線を表すと言えるのですか?なぜそうなるのか分からないので教えてほしいです!!

例題 96 2円の交点を通る図形 **** xy平面上の2つの円 C:x+y=25 C2: x2+y^-8x-6y+230 にっ いて,次の問いに答えよ. (1) C, C2 の2つの交点を通る直線の方程式を求めよ. (2) C, C2 の2つの交点を通り, 点 (3, 1) を通る円の方程式を求めよ。 考え方 例題 79(p.157) の2直線の交点を通る直線群と 解答 同様に考えるとよい . 2円の位置関係をまず確認する. x°+ y°-8x -6y +23=0 より, (x-4)+(y-3)=2 2円の中心間の距離√4°+325と2円の半径 5.2よ り5-√25 < 5+√2 だから,この2円は異なる2 点で交わる. したがって, 求める方程式は,次のようにおける. (名城大改) 必ず2円の位置関係 を確認しておく。 (x2+y-8x-6y+23)+k(x+y-25)=0 (1) ① は k=-1 のとき,2円の交点を通る直線を表す. ・① よって,(x+y°-8x-6y+23)(x+y-25)=0よ り求める直線の方程式は, 4.x+3y-24=0 k=-1 のとき直線を キー1のとき円を表 す。 (2)①はキー1のとき,2円の交点を通る円 (C, を除く) を表す点 (3,1) を通るので, (32+12-8・3-6・1+23)+k(32+1-25)=0 5 3-15k=0 より k= C₁ よって,(x+y-8x-6y+23)+=(x+y^-25) = 0 1 -5 より,求める円の方程式は,xty-gx-5y+15=0 20 Focus 羽 (3, 1) 2円 x+y+lx+my+n=0.①, x+y+lx+m'y+n′=0…② が異なる2点で交わるとき, は, (x²+ y²+lx+my+n) + k (x² + y² + l' x + m'y+n') =0 ---③ 1のとき、2つの交点を通る円を表す =1のとき、2つの交点を通る直線を表す (ただし,③は円 ②を表せないので注意する)

解決済み 回答数: 1
1/4