学年

質問の種類

数学 高校生

ィの解説の(iii)でなんで-の方も成り立つのですか?

163 直方体 右図のような直方体 OADB-CEFG において OA=a, OB=6,DC=c とおく. \G F P ||=1,|6|=2, ||=3 とし, 2点E, Gを通る C 直線を とする. E (1) OE, OG を で表せ (2)Pを1上の点とする. このとき, OPは実数 tを用いて, OP =OE+tEG と表せる。 (ア) OP⊥EGとなるtの値を求めよ. (イ)△OEP が二等辺三角形となるときの 値をすべて求めよ. 3 B O 2 b a 1 A AA D ()() (2) (ア) OP, EG (=OG-OE) を a, L, で表し,|a|=1,||=2, 精講 ||=3, a1=c=cd=0 を用いて計算すれば, tの方程式が でてきます. これを解けば答えはでてきます. (イ) 二等辺三角形という条件は要注意です. それはどの2辺が等しいかによっ て,3つの場合が考えられるからです。 注 →3つの場合でしらべる 三辺の距離を求める (イ)|OE|=12+32=10 |OP|=|(1-t)a+t+c (1) 画 =(1−t)|a²+b²+1c1² (a+b=b.c=c.a=0) J30=12-21+1+4t²+9=5t²-2t+10 |EP|=|tEG|2=5t2 ← (i) OE OP のとき, OEPOP より,エース 253 10=5t2-2t+10 t(5t-2)=0.. t = // (t=0は不適 (OPEP のとき,|OP|=|EP|より 5t2-2t+10=5t2 2t+10=0 :.t=5 POE のとき,|EP|=|OÉRより,平日 5t2=10 t2=2. t=±√2 (1)〜() より t=±√2, 5' (2) 直方体では, 座標も有効な手段です. すなわち, A (1, 0, 0), B(0, 2, 0), C(0, 0, 3) とおくと, EG=AB だから OP= (1,0,3)+t(-1,2,0)=(-t+1, 2t3) と表せ, P(-t+1, 2t, 3), E (1, 0, 3) と座標で表して, OP2, EP2, OE' を計 算します。 解答 (1) OE=OA+OC=d+c OG=OB+OC=6+ (2) (ア)OP=OE+tEGOE+(OG-OE) =a+c+t(-a) =(1−t)a+to+c OPEG = 0 だから {(1-t)a+to+c)(-a)=0 . (t−1)|at|62=0 ||=1,||=2より t-1+4t=0 5 ( à·b=b.c=c·à=0) ポイント単に「二等辺三角形」「直角三角形」 とあったら, 場合 が3種類あることに注意 演習問題 163 右図の直方体において, AG = (5, 5, -3), H G AC=(3,1,2), BH=(3,1,-7) が成りた っている. (1) AB, AD, AE を成分で表せ. (2)直線AH 上に, △ABP が二等辺三角形 A となるように点Pをとる. (ア) <BAH= を示せ. (イ) A=tA となる実数tの値を求めよ. Di F 第8章

未解決 回答数: 1
数学 高校生

点PとQが一致するってどういうことですか? 直線に対して対称っていうことは線対称ですよね 同じ場所にある点は線対称って言えるんですか? 旧課程のチャートでは[2]は解答に書いてなかったんですけどなんで新課程ではこれが書いてあるんですか?

基本 例題 100 直線に関する対称移動 00000 直線x+y=1 に関して点Qと対称な点をPとする。 点Qが直線 □上を動く。 x-2y+8=0 上を動くとき,点Pは直線 [ ③ 基本 78,98 CHART & SOLUTION 線対称 直線 l に関して P と Qが対称 [[1] 直線 PQ がℓに垂直 e [2] 線分 PQ の中点が上にある Q 点Qが直線 x-2y+8=0 上を動くときの, 直線 l : x+y=1 に関して点Qと対称な点 Pの軌跡, と考える。 つまり, Q(s, t) に連動する点P (x,y) の軌跡 3 ① s, txyで表す。 ② x, yだけの関係式を導く。 13 解答 直線x-2y+8=0 ① ② 上を動く点をQ(s, t)とし, 直線 x+y=1 inf 線対称な直線を求め (1) るには EXERCISES ...... 2 121 4 に関して点Qと対称な点を P(x, y) とする。 |1 71 (p.137) のような方法も Q(s,t) あるが, 左の解答で用いた 軌跡の考え方は,直線以外 の図形に対しても通用する。 軌跡と方程式 [1] 点PとQが一致しない とき, 直線 PQ が直線② -8 01 iP(x,y) に垂直であるから t-y.(-1)=-1 (3) 垂直⇔傾きの積が1 8-X 線分 PQ の中点が直線②上にあるから xts+y+t=1 ④ 2 ③から s-t=x-y 線分PQの中点の座標は c+s ④から s+t=2-(x+y) s, tについて解くと s=1-y, t=1-x また,点Qは直線 ①上の点であるから s-2t+8=0 ⑤⑥に代入して すなわち 2x-y+7=0 (1-y)-2(1-x)+8=0 [2]点PとQが一致するとき、点Pは直線 ①と②の交点 上の2式の辺々を加え ると 2s=2-2y[s] 辺々を引くと -2t=2x-2 ← s, tを消去する。 ⑤ (6) ⑦ であるから x=-2,y=3 これは ⑦を満たす。 以上から、求める直線の方程式は 2x-y+7=0 方程式 ①と②を連立 させて解く。

未解決 回答数: 1
数学 高校生

数学 軌跡 反転 この問題を複素数を利用して解く方法を教えてください

184 重要 例題 116 反転 OP・OQ=(一定) の軌跡 00000 |xy平面の原点を0とする。 xy 平面上の0と異なる点Pに対し, 直線 OP 上の 点Qを,次の条件 (A), (B) を満たすようにとる。 (A) OP・OQ=4 (B) Q は, 0 に関してPと同じ側にある。 点Pが直線x=1上を動くとき,点Qの軌跡を求めて、図示せよ。 〔類 大阪市大 指針 求めるのは、点Pに連動して動く点Qの軌跡。 基本110 連動形の軌跡 つなぎの文字を消去して,x,yの関係式を導く P(X, Y), Q(x, y) とすると, 2点P, Qの関係は 点Qが半直線 OP 上にある⇔ X = tx, Y = ty となる正の実数 tが存在する このことと条件(A) から, tを消去して,X,Yを x, yの式で表す。 そして、点Pに関 する条件 X=1より, x, yの関係式が得られる。 なお, 除外点に注意。 点 Q の座標を (x, y) とし, 点Pの座標を (X, Y) とする。 解答 Qは直線OP 上の点であるから Q(x,y) P(X, Y) X=tx, Y=ty (tは実数) ただし、点Pは原点と異なるから t=0, (x, y)≠(0, 0) 更に, (B) から, t>0である。 x2+y2 参考事項 反転 表す ※定点を中心とする半径r (r>0) の円がある。 点を通る直 に, 0と異なる点P をとり, 半直線OP 上に点P' を OP・OP'= によって定める。 このとき,点Pに点P' を対応させることを といい,点を反転の中心という。 また、点Pが図形F上にあるとき, 点P' が描く図形F' をF 反形という。円や直線の反転に関しては,次のような性質が (1)定点 0 を通らない直線の反形は, 0を通る円にな (2) 定点を通る円の反形は, 0 を通らない直線にな (3) 定点を通らない円の反形は, 0 を通らない円に [(1)の証明] O を通らない直線を l とする。 0から lに下ろした垂線と l との交点をP。 とし, Poを反転した 点をP とする。 また l 上のP。 以外の点をPとし,Pを反転した点をP'とする。 OPOP=OPOP' より, OP: OP'=OP : OP であるから、 2組の辺の比とその間の角がそれぞれ等しくなり OPPOP'P よって ∠OP'P'′ = ∠OPP=90° したがって, P'は線分 OP を直径とする円を描く。 ただし, OP'>0であるから, 点0は除く。 [(2) の証明] 線分 OP。 が円の直径となるように、点Po をとり, P 反転した点をP とする。 また, Po以外の点Pを反転した点を (A)から √x2+y2√(tx)2+(ty)2=4 ゆえに t(x2+y2)=4 よって t= 4 x2+ye したがって X= 4x x2+y2. 4y Y= tを消去する。 とすると, (1) と同様にして 4x 点Pは直線x=1上を動くから =1 x2+y2 ゆえに y X=1 に X= 代入する。 4x x2+y2 を 線分OP が直径であるから よって (x-2)'+y2=4 2- したがって,求める軌跡は 中心が点 (2,0), 半径が20円。 0 12 14 x ただし, (x,y)≠(0,0)である から, 原点は除く。 -2- 図示すると、 右図のようになる。 x2+y2-4x=0 注意 本間は、反転の問題 である。 反転については, 次ページ参照。 OPPOP'P ∠OPP=90° よって,∠OP'P'=90°から、点P'は,点P を通り OPに垂 な直線上を動く。 [ [3] の証明] 右の図のように、線分 P.P が円の直径 となるように、点Po, P1 をとり, Po, P, を反転し た点をそれぞれP, P' とする。 また, Po, P, とは異なる, 0 を通る直線と円との 交点をPとし,Pを反転した点をP'とする。 (1)と同様にして AOP POO PC 0 Po

未解決 回答数: 0
1/63