学年

質問の種類

数学 高校生

四角で囲んだ所って、どこからきたんですか??

478 例題 43 隣接3項間の漸化式 (3) 0000 この階段の (nは自然数) ある階段を1歩で1段または2段上がるとき, 方の総数を α とする。 このとき, 数列 {an} の一般項を求めよ。 数列 {an} についての漸化式を作り,そこから一般項を求める方針で行く 1歩で上がれるのは1段または2段であるから,n≧3のときれ 7段に達する 直前の 作を考えると [1] 2段手前 [(n-2) 段] から2歩上がりで到達する方法 [2] 1段手前 [ (n-1) 段] から1歩上がりで到達する方法 の2つの方法がある。 このように考えて、 まず隣接3項間の漸化式を導く。 → 漸化式から一般項を求める要領は, p.476 基本例題41と同様であるが、 ここで 特性方程式の解α. βが無理数を含む複雑な式となってしまう。計算をらくに ためには,文字 αのままできるだけ進めて、最後に値に直すとよい α=1, a2=2である。 解答 n3のとき, n段の階段を上がる方法には,次の [1], [2] の 場合がある。 [1] 最後が1段上がりのとき, 場合の数は (n-1) 段目まで の上がり方の総数と等しく an-通り [2] 最後が2段上がりのとき、 場合の数は (n-2) 段目まで の上がり方の総数と等しく an-2通り [1] 最後に1段上がる n段 n=2 [2] 最後に2段上がる n段 ここまで an-1 通り (n-1) 段 (-2) 段 ここまでα-2通り もっていく。 | (n-1) 段 よって an=an-1+an-2(n≧3) ...... (*) dants antitan (n ≥1) ①と同値である。 x=x+1の2つの解をα,β(α<β) とすると, 解と係数の 関係から α+β=1, aβ=-1 ①から an+2-(a+β)an+1+aBan=0 よって an+2-dan+1=β(aniュ-aan) az-aa=2-a ...... an+2-Ban+1=α(an+1-Ban) a2-ßa=2β...... ③ 和の法則 (数学 (*)でnnt 特性方程式 x2-x-1=0の x= 1±√5 2 a=1, a2=2 から ③から an+1-aan=(2-α)+ ..... ◄ar"-1 an+1-Ban=(2-β)α7-1 ④ ⑤ から (β-α)an=(2-α)β"-1-(2-β) an-1 ...... (6) an+1 を消去。 1-√5 a= 1+√5 B= 2 ラ であるからβ-α=√5 α,β を値に直 また, α+β=1, a2=α+1, B2=β+1であるから 2-α=2-(1-β)=β+1=β2 同様にして 12-a, 2-B 2-B=a² はαβの よって、⑥から an= 1+√5 \n+1 √(1+√5)-(1-√5) |- ④ 43 a=a2=1, an+2=an+1+3an 練習 次の条件によって定められる数列{an} の一般項を求めよ。 代入しても ここでは計算を ている。 類

解決済み 回答数: 1
数学 高校生

丸したところが,どうしてそのように言えるのかわからないので教えてください

478 重要 例 43 隣接3項間の漸化式 (3) n段 (nは自然数) ある階段を1歩で1段または2段上がるとき、 がり方の総数をα とする。 このとき, 数列{an}の一般項を求めよ。 この 指針 数列{a} についての漸化式を作り、そこから一般項を求める方針で行く。 1歩で上がれるのは1段または2段であるから, n≧3のとき En段に達する 作を考えると [1] 2段手前 [(n-2) 段] から2歩上がりで到達する) [2] 1段手前 [(n-1) 段] から1歩上がりで到達する方法は の2つの方法がある。このように考えて,まず隣接 3 項間の漸化式を導く。 →漸化式から一般項を求める要領は, p.476 基本例題41と同様であるが、 特性方程式の解α, β が無理数を含む複雑な式となってしまう。 計算をら ためには,文字 α βのままできるだけ進めて、最後に値に直すとよい α=1, a2=2である。 解答 n3のとき, n段の階段を上がる方法には、次の [1], [2] の 場合がある。 - [1] 最後が1段上がりのとき, 場合の数は (n-1) 段目まで の上がり方の総数と等しく 通り [2] 最後が2段上がりのとき, 場合の数は(n-2) 段目まで の上がり方の総数と等しく 1=2 通り [1] 最後に1段上がる [2] 最後に2段上がる n (n-1)段 ここまでαn- 通り (n-2) (n-1)段 ここまで よって an=an-1+an-2 (n≧3) ...... (*) 和の この漸化式は,an+2=an+1+an (n≧1) … ①と同値である。 x2=x+1の2つの解をα,β(α<β) とすると, 解と係数の 関係から比較 α+β=1, aβ=-1 ①から an+2-(a+β)an+1+aBan=0 よって X an+2-dan+1=β(an+1-aan), az-aa=2-a an+2-βan+1=α(an+1-Ban), a2-βa=2-β ...... a ... * 特性 ②から ③から an+1-dan=(2-α)βn-1 an+1-ßan=(2-β)α7-1 ...... (4) (5) ④ ⑤ から (β-α)an=(2-α)β"-1-(2-β)an-1 ...... (6) 1-√5 a= 2, B= 1+√√5 であるから β-α=√5 よって、⑥から an= √5 また, α+β=1, a2=α+1, β2=β+1 であるから 2-α=2 (1-B)=B+1=8° 同様にして ((1+√5)-(1-√5)) 2-β=α2 1+√5)* -(1-√5)**) 次の条件 練習 ④ 43 次の条件によって定められる数列{an} の一般項を求めよ。 a=a2=1, an+2=an+1+3an an a Ad

解決済み 回答数: 1
数学 高校生

この問題の解説の意味がわかりません 立式する過程での理由っていうものがよくわかんないので教えて欲しいです。

478 重要 例題 43 隣接 3 項間の漸化式 (3) | がり方の総数を an とする。 このとき, 数列{an} の一般項を求めよ。 この 指針 数列 {a} についての漸化式を作り、そこから一般項を求める方針で行く。 1歩で上がれるのは1段または2段であるから,n≧3のとき! 九段にする の2つの方法がある。 このように考えて,まず隣接3項間の漸化式を導く。 作 を考えると [1] 2段手前 [(n-2) 段] から2歩上がりで到達する方法 [2] 1段手前[(n-1) 段] から1歩上がりで到達する方法 →漸化式から一般項を求める要領は, p.476 基本例題41と同様であるが、 特性方程式の解α, βが無理数を含む複雑な式となってしまう。計算をらく ためには,文字 α βのままできるだけ進めて、最後に値に直すとよい。 α=1, a2=2である。 解答のとき,段の階段を上がる方法には,次の [1], [2] の 場合がある。 - [1] 最後が1段上がりのとき, 場合の数は (n-1) 段目まで の上がり方の総数と等しく an-1 [2] 最後が2段上がりのとき, 場合の数は (n-2) 段目まで の上がり方の総数と等しく an-2 =2 フィオ いて、 あ ある 新た ま ろ 月末 とな 漸イ こ {a か ① [1] 最後に1段上がる [2] 最後に2段上がる n FX 九段 a (n-1)段 ここまで an-1 通り (n-1) 段 | (n-2) 段 ここまで2通り よって an=an-1+an-2 (n≧3) (*) 和の法則(数学 この漸化式は,n+2=an+1+an (n≧1)... ①と同値である。(*)でカード x=x+1の2つの解をα, β (α<β) とすると, 解と係数の 関係から ①から α+β=1, aβ=-1 2-(1-x)=(- an+2-(a+β)an+1+aban = 0 よって an+2-dan+1=β(an+1-aan), az-aa=2-a an+2-βan+1=α(an+1-Ban), az-Ba=2-β ②から ③から an+1-aan=(2-α)B-1 an+1- -βan=(2-β)an-1 ◆特性方程式 x2-x-1=00 x= 1±√5 ...... a=1, al ◄ar"-1 ④ こ ...... ⑤ α+1 を消去 ④ ⑤ から (B-α)an=(2-α)β"-1-(2-β)α7-1 1-√√5 a= 2 B=1+1/5 2 であるから B-a=√5 また,α+β=1, a2=α+1, B2=β+1であるから 2-α=2-(1-B)=B+1=2 2-B=a² 同様にして よって、⑥から an= 1 1+√5 \n+1 1-√√5 2 雪 次の条件によって定め 3 α,βを値に直す 12-a, 2-8 は、α,Bの値を 代入してもよい ここでは計算を ている。

解決済み 回答数: 1
数学 高校生

数Ⅲ 写真の青線部分の意図と意味がよくわかりません。 ここでの「常に〜〜ではない」は、always not ○○ かnot always ○○でいうとどちらの意味でしょうか? またこの一文はどのような役割をしていますか? もう一つ、この問題文を見た時に「よし、積分を使って... 続きを読む

重要 例題 249 数列の和の不等式の証明 (定積分の利用) 00000 は2以上の自然数とする。 次の不等式を証明せよ。 7章 36 定積分と和の極限、不等式 3 log(n+1)<1+1/+1/27 +: + // <logn+1 n 基本 245,248 演習 254 指針 数列の和 1+ + 1 1 2 3 +...... + は簡単な式で表されない。 そこで, 積分の助けを借りる。 n すなわち, 曲線y= 1 の下側の面積と階段状の図形の面積を比較して,不等式を IC 証明する。 ☑ 解答 自然数んに対して, k≦x≦k+1のとき y x 1 1 1 1 I VO 3k+1 x k 式ア 常に k+1 から k k+1 1 2112=1/2ではない x k+1dx x •k+1 k k+1dx dx Sk 1 k+1 dx x k x ck+1dx よって k+1 k XC k Ck+1 dx x k 0 123…nt x k n-1 n+1 k+1 k k+1 x I 1 VIA: k+1 n Ck+1 n k+1dx k=1Jk n+1 から x k=1k [** dx =f*** dx®-[10gx]"* k=1Jk x 1 = log(n+1) であるから log(n+1)<1+ 式イ A=1,2,…, nと して辺々を加える。 [n+1 0 123… †n x B =logx n-1 © S² • + S²₂² Cn+1 +・・・+ 72 =S+ n+1 y= 1x < 1 1k + 2 3 + n Ck+1 dx Cから x k+1 g h +1 k =logx =logn であるから [10gx] ES** dx="dx =[log]= x x n-1 1 k=1k+1 n_1k+1dx ① < ① k=1Jk x n 1 1 1 + +......+ でん=1,2,…, n-1 として辺々を加える。 <logn 3 n 1 1 1 この不等式の両辺に1を加えて + +: ...+ <logn+1.. ② 2 3 n よって、①,② から, n≧2のとき log(n+1)<1+ 12 + 13 1 n <logn+1

解決済み 回答数: 1
1/27