学年

質問の種類

数学 高校生

⬇1枚目(2)の青で色をつけてる部分cos(90°+20°)=-sin20°になる理由がわからないです なぜsinが-になっているんですか? 2枚目は自分で書いたもので、sin=y/rでyはプラスなのでcos(90°+20°)=sin20°だと考えました まだ基礎が定着... 続きを読む

基本 例題 111 鈍角の三角比の値と式の変形 00000 (1) cos 135° × sin 120°×tan 150° ÷ cos60°の値を求めよ。 (2) sin 80° + cos 110°+sin 160°+cos 170°の値を求めよ。 p.181 基本事項 1,2 CHART & SOLUTION 角の三角比の扱い 直接, 値を求めるか, 鋭角の三角比に直す 280°=90°-10° 110°=90°+20° 160°=180°-20° 170°=180°-10° に着目して,各項を 10, 20°の三角比で表す。 開答 (1)与式 1/2×2×(1/13) = 別解(1) cos135°=cos(180°-45°)=-cos 45° sin120°=sin(180°-60°)=sin 60° tan150=tan(90°+60°)=- 1 tan 60° _cos60° sin 60° cos 135°=cos (90°+45°) =-sin45° sin120°=sin(90°+30° =cos 30° tan150°=tan (180°-30°) よって、 与式は (-cos 45°)xsin 60°x cos 60° sin 60° (2)与式)=sin(90-10°)+cos(90°+20°)+sin(180°-20° +cos (180°-10°) =cos 10°-sin 20°+sin 20°-cos 10° =0 =-tan 30° cos60°=cos (90°-30°) = sin 30° として計算してもよい。 |÷cos 60°=cos 45°= INFORMATION 鋭角の三角比に直す公式の覚え方 使えない 180F-6, 90°+0 の三角比の公式は,丸暗記するのではなく, 図と関連付けて理解し よう。下の図の点Pの座標に注目することで,公式を導くことができる。 18の三角比 90°+0 の三角比 y 34 sin(90°+0)=x sin (180°-9)=y 90°+0 =cós o 1806 =sin 0 1 (2,3) cos(180-0)=% tan (180°-0)= (-y,x) (x,y) cos(90°+0)=-y =-cos X V =-sin0 x JOH tan(90°+0)==y -1 -y O x1x #1 % =-tan 0 tan

解決済み 回答数: 1
数学 高校生

数1️⃣三角比 一枚目青の部分の理由がわかりません。どうイメージすればいいのでしょうか?2枚目3枚目あたりのことは頭に入っています わかる方よろしくお願いします🙇

木の ななめ みたいな 三角比の値の範囲 第1節 三角比 145 00-081 まる。よって、今後は半径がりの半円で考える。 三角比の値は,いずれも半円の半径に関係なく, 0だけによって定 第4章 図形と計量 (90° たおす つぶれた →ななめが1 右の図のように, 原点Oを中心とする 半径1の半円をかき,この半円とx軸の 正の部分の交点をAとする。 0° <90° y4 半円周上に,点P(x, y) を mFL こっちからみれば たて P(x,y) T(1, m) AOP=0 (0°≦≦180°) よここななめ となるようにとると, 0 の三角比は,点P の座標を用いて,次の式で表される。 1 y -1 0 x 1 x 符号は, 0で われない sin0=y, cos0=x, tang=卫たて ななめ ななめ よこ 90°0≦180° から! ここで0≦x≦1,-1≦x≦1であるから, 0°0≦180°の sind, cose の値について 次のことが成り立つ。 y 1 P(x,y) y [H A 0≦sin0≦1,-cos -1x 0 15 11 x また, 0≠90°のとき, 点A(1,0)を通 りx軸に垂直な直線と, 直線 OP の交点 をT(1, m) とすると mp. T(1, m) 止めて tan0=y= m =m x 1 80° である。0°≧≦180°,0≠90°の範囲で0を動かすと, は実数全体を 動く。 したがって, tan 0 はすべての実数値をとる。 0 が 0°から 180°まで変わるとき, sin, cos 0, tan の値は, それぞ 深める ように変わるか説明してみよう。 日が大きくなるとtan大きくなる(90°除)

解決済み 回答数: 1
数学 高校生

(2)がわかりません。 問題文にある標高から地球の半径を求めるの時点で頭に?が浮かんでいて、(1)は教えていただき納得したのですが、(2)の問題文の水平線上のある点Dにおける俯角θが図のどこかが解説を見ても納得ができず、何もかもわからなくて困ってます…投げやりになってしまい... 続きを読む

〔2〕 太郎さんと花子さんは, ある山Aの山頂Bの標高を測ることで、地球の半径を 求めることにした。 以下では次のことを仮定して計算するものとする。 (7) ある地点の標高とは、平均海面を基準とした高さのことを指すものとする。 問(4) 仰角、俯角の測定の際は、太郎さんと花子さんの身長は考えないこととする。 (ウ) 平均海面を地表面とするとき,地球は完全な球体と考える。 ただし,山頂 B の標高の測定において,地表面は球面ではなく平面として考え るものとする。 すなわち, 水平面を考えることができ, 標高が異なる2地点P, Q の水平距離とは P, Qから水平面上に下ろした垂線 PH QM に対して,2H, Mの距離を表す。 また, tan 20°= 0.3640 とする。 (2) 太郎さんは山頂 Bに登頂し,そこから水平線上のある点Dまでの俯角を 測ることで,花子さんの測定結果と合わせて、地球の半径を計算できると考え た。なお, 水平線は水面と空との境界をなす線とする。 地球の中心を0とすると、 ∠BOD = とせる ケ の解答群 90°-0 ① 45°-0 A ③ 45° + 0 ④ 90° +0 (1) 山Aの山頂 B と, 標高 1mの地点Cは水平距離で3500m離れている。 花子 さんが,地点Cで山頂 Bを見上げて仰角を測ったところ, 仰角は 20° であった。 山頂Bの標高は X 地球の半径を0と (1)の山頂B の標高 hm を用いて表すと, 地球の半径は _mである。 あとは、俯角を正しく計測することで, 地球の半径の値 を計算できる。 h=オカキク (m) である。 (数学Ⅰ 第1問は次ページに続く。) コ の解答群 O h sine 1-sin h+sine ① 1-sine h cose ③ h+cose 1-cos ② ④ 1- -cos h tan 1-tan 0 h+tan 0 1-tane (数学1第1問は次ページに続く。)

解決済み 回答数: 1
1/7